A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding - PubMed (original) (raw)
A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding
K Sohn et al. J Cell Biol. 1996 Dec.
Abstract
Formation of non-clathrin-coated vesicles requires the recruitment of several cytosolic factors to the Golgi membrane. To identify membrane proteins involved in this budding process, a highly abundant type I transmembrane protein (p23) was isolated from mammalian Golgi-derived COPI-coated vesicles, and its cDNA was cloned and sequenced. It belongs to the p24 family of proteins involved in the budding of transport vesicles (Stamnes, M.A., M.W. Craighead, M.H. Hoe, N. Lampen, S. Geromanos, P. Tempst, and J.E. Rothman. 1995. Proc. Natl. Acad. Sci. USA. 92:8011-8015). p23 consists of a large NH2-terminal luminal domain and a short COOH-terminal cytoplasmic tail (-LRRFFKAKKLIE-CO2-) that shows similarity, but not identity, with the sequence motif-KKXX-CO2-, known as a signal for retrieval of escaped ER-resident membrane proteins (Jackson, M.R., T. Nilsson, and P.A. Peterson. 1990. EMBO (Eur. Mol. Biol. Organ.) J. 9:3153-3162; Nilsson, T., M. Jackson, and P.A. Peterson. 1989. Cell. 58:707-718). The cytoplasmic tail of p23 binds to coatomer with similar efficiency as known KKXX motifs. However, the p23 tail differs from the KKXX motif in having an additional motif needed for binding of coatomer. p23 is localized to Golgi cisternae and, during vesicle formation, it concentrates into COPI-coated buds and vesicles. Biochemical analysis revealed that p23 is enriched in vesicles by a factor of approximately 20, as compared with the donor Golgi fraction, and is present in amounts stoichiometric to the small GTP-binding protein ADP-ribosylation factor (ARF) and coatomer. From these data we conclude that p23 represents a Golgi-specific receptor for coatomer involved in the formation of COPI-coated vesicles.
Similar articles
- Involvement of the transmembrane protein p23 in biosynthetic protein transport.
Rojo M, Pepperkok R, Emery G, Kellner R, Stang E, Parton RG, Gruenberg J. Rojo M, et al. J Cell Biol. 1997 Dec 1;139(5):1119-35. doi: 10.1083/jcb.139.5.1119. J Cell Biol. 1997. PMID: 9382861 Free PMC article. - COPII vesicles derived from mammalian endoplasmic reticulum microsomes recruit COPI.
Rowe T, Aridor M, McCaffery JM, Plutner H, Nuoffer C, Balch WE. Rowe T, et al. J Cell Biol. 1996 Nov;135(4):895-911. doi: 10.1083/jcb.135.4.895. J Cell Biol. 1996. PMID: 8922375 Free PMC article. - Tmp21 and p24A, two type I proteins enriched in pancreatic microsomal membranes, are members of a protein family involved in vesicular trafficking.
Blum R, Feick P, Puype M, Vandekerckhove J, Klengel R, Nastainczyk W, Schulz I. Blum R, et al. J Biol Chem. 1996 Jul 19;271(29):17183-9. doi: 10.1074/jbc.271.29.17183. J Biol Chem. 1996. PMID: 8663407 - COPs regulating membrane traffic.
Kreis TE, Lowe M, Pepperkok R. Kreis TE, et al. Annu Rev Cell Dev Biol. 1995;11:677-706. doi: 10.1146/annurev.cb.11.110195.003333. Annu Rev Cell Dev Biol. 1995. PMID: 8689572 Review. - Biogenesis of COPI-coated transport vesicles.
Nickel W, Wieland FT. Nickel W, et al. FEBS Lett. 1997 Aug 25;413(3):395-400. doi: 10.1016/s0014-5793(97)00939-3. FEBS Lett. 1997. PMID: 9303543 Review.
Cited by
- Involvement of a Golgi-resident GPI-anchored protein in maintenance of the Golgi structure.
Li X, Kaloyanova D, van Eijk M, Eerland R, van der Goot G, Oorschot V, Klumperman J, Lottspeich F, Starkuviene V, Wieland FT, Helms JB. Li X, et al. Mol Biol Cell. 2007 Apr;18(4):1261-71. doi: 10.1091/mbc.e06-03-0236. Epub 2007 Jan 24. Mol Biol Cell. 2007. PMID: 17251550 Free PMC article. - Cytosolic N-terminal arginine-based signals together with a luminal signal target a type II membrane protein to the plant ER.
Boulaflous A, Saint-Jore-Dupas C, Herranz-Gordo MC, Pagny-Salehabadi S, Plasson C, Garidou F, Kiefer-Meyer MC, Ritzenthaler C, Faye L, Gomord V. Boulaflous A, et al. BMC Plant Biol. 2009 Dec 8;9:144. doi: 10.1186/1471-2229-9-144. BMC Plant Biol. 2009. PMID: 19995436 Free PMC article. - A Genome-Wide Haploid Genetic Screen Identifies Heparan Sulfate-Associated Genes and the Macropinocytosis Modulator TMED10 as Factors Supporting Vaccinia Virus Infection.
Luteijn RD, van Diemen F, Blomen VA, Boer IGJ, Manikam Sadasivam S, van Kuppevelt TH, Drexler I, Brummelkamp TR, Lebbink RJ, Wiertz EJ. Luteijn RD, et al. J Virol. 2019 Jun 14;93(13):e02160-18. doi: 10.1128/JVI.02160-18. Print 2019 Jul 1. J Virol. 2019. PMID: 30996093 Free PMC article. - Characterization of the genome of feline foamy virus and its proteins shows distinct features different from those of primate spumaviruses.
Winkler I, Bodem J, Haas L, Zemba M, Delius H, Flower R, Flügel RM, Löchelt M. Winkler I, et al. J Virol. 1997 Sep;71(9):6727-41. doi: 10.1128/JVI.71.9.6727-6741.1997. J Virol. 1997. PMID: 9261397 Free PMC article. - Identification of potential regulatory elements for the transport of Emp24p.
Nakamura N, Yamazaki S, Sato K, Nakano A, Sakaguchi M, Mihara K. Nakamura N, et al. Mol Biol Cell. 1998 Dec;9(12):3493-503. doi: 10.1091/mbc.9.12.3493. Mol Biol Cell. 1998. PMID: 9843583 Free PMC article.
References
- Cell. 1991 Oct 18;67(2):239-53 - PubMed
- Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11089-93 - PubMed
- J Cell Biol. 1992 Apr;117(2):259-67 - PubMed
- EMBO J. 1992 Jun;11(6):2071-5 - PubMed
- Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6408-12 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases