Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination - PubMed (original) (raw)
. 1996 Nov;112(1):103-11.
doi: 10.1007/BF00227183.
Affiliations
- PMID: 8951412
- DOI: 10.1007/BF00227183
Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination
S T Grafton et al. Exp Brain Res. 1996 Nov.
Abstract
Positron emission tomography imaging of cerebral blood flow was used to localize brain areas involved in the representation of hand grasping movements. Seven normal subjects were scanned under three conditions. In the first, they observed precision grasping of common objects performed by the examiner. In the second, they imagined themselves grasping the objects without actually moving the hand. These two tasks were compared with a control task of object viewing. Grasp observation activated the left rostral superior temporal sulcus, left inferior frontal cortex (area 45), left rostral inferior parietal cortex (area 40), the rostral part of left supplementary motor area (SMA-proper), and the right dorsal premotor cortex. Imagined grasping activated the left inferior frontal (area 44) and middle frontal cortex, left caudal inferior parietal cortex (area 40), a more extensive response in left rostral SMA-proper, and left dorsal premotor cortex. The two conditions activated different areas of the right posterior cerebellar cortex. We propose that the areas active during grasping observation may form a circuit for recognition of hand-object interactions, whereas the areas active during imagined grasping may be a putative human homologue of a circuit for hand grasping movements recently defined in nonhuman primates. The location of responses in SMA-proper confirms the rostrocaudal segregation of this area for imagined and real movement. A similar segregation is also present in the cerebellum, with imagined and observed grasping movements activating different parts of the posterior lobe and real movements activating the anterior lobe.
Similar articles
- Functional anatomy of the mental representation of upper extremity movements in healthy subjects.
Stephan KM, Fink GR, Passingham RE, Silbersweig D, Ceballos-Baumann AO, Frith CD, Frackowiak RS. Stephan KM, et al. J Neurophysiol. 1995 Jan;73(1):373-86. doi: 10.1152/jn.1995.73.1.373. J Neurophysiol. 1995. PMID: 7714579 - Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
Winstein CJ, Grafton ST, Pohl PS. Winstein CJ, et al. J Neurophysiol. 1997 Mar;77(3):1581-94. doi: 10.1152/jn.1997.77.3.1581. J Neurophysiol. 1997. PMID: 9084621 Clinical Trial. - A H(2)(15)O positron emission tomography study on mental imagery of movement sequences--the effect of modulating sequence length and direction.
Boecker H, Ceballos-Baumann AO, Bartenstein P, Dagher A, Forster K, Haslinger B, Brooks DJ, Schwaiger M, Conrad B. Boecker H, et al. Neuroimage. 2002 Oct;17(2):999-1009. Neuroimage. 2002. PMID: 12377173 Clinical Trial. - The extended object-grasping network.
Gerbella M, Rozzi S, Rizzolatti G. Gerbella M, et al. Exp Brain Res. 2017 Oct;235(10):2903-2916. doi: 10.1007/s00221-017-5007-3. Epub 2017 Jul 26. Exp Brain Res. 2017. PMID: 28748312 Review. - Grasping objects: the cortical mechanisms of visuomotor transformation.
Jeannerod M, Arbib MA, Rizzolatti G, Sakata H. Jeannerod M, et al. Trends Neurosci. 1995 Jul;18(7):314-20. Trends Neurosci. 1995. PMID: 7571012 Review.
Cited by
- UP-BEAT (Upper Limb Baby Early Action-observation Training): protocol of two parallel randomised controlled trials of action-observation training for typically developing infants and infants with asymmetric brain lesions.
Guzzetta A, Boyd RN, Perez M, Ziviani J, Burzi V, Slaughter V, Rose S, Provan K, Findlay L, Fisher I, Colombini F, Tealdi G, Marchi V, Whittingham K. Guzzetta A, et al. BMJ Open. 2013 Feb 14;3(2):e002512. doi: 10.1136/bmjopen-2012-002512. Print 2013. BMJ Open. 2013. PMID: 23418301 Free PMC article. - Recovery of motor imagery ability in stroke patients.
de Vries S, Tepper M, Otten B, Mulder T. de Vries S, et al. Rehabil Res Pract. 2011;2011:283840. doi: 10.1155/2011/283840. Epub 2011 Apr 5. Rehabil Res Pract. 2011. PMID: 22110971 Free PMC article. - Premotor cortex is sensitive to auditory-visual congruence for biological motion.
Wuerger SM, Parkes L, Lewis PA, Crocker-Buque A, Rutschmann R, Meyer GF. Wuerger SM, et al. J Cogn Neurosci. 2012 Mar;24(3):575-87. doi: 10.1162/jocn_a_00173. Epub 2011 Nov 29. J Cogn Neurosci. 2012. PMID: 22126670 Free PMC article. - Kinesthetic imagery of musical performance.
Lotze M. Lotze M. Front Hum Neurosci. 2013 Jun 13;7:280. doi: 10.3389/fnhum.2013.00280. eCollection 2013. Front Hum Neurosci. 2013. PMID: 23781196 Free PMC article. - Grasping the intentions of others with one's own mirror neuron system.
Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G. Iacoboni M, et al. PLoS Biol. 2005 Mar;3(3):e79. doi: 10.1371/journal.pbio.0030079. Epub 2005 Feb 22. PLoS Biol. 2005. PMID: 15736981 Free PMC article.
References
- Exp Brain Res. 1988;71(3):491-507 - PubMed
- Science. 1979 Nov 16;206(4420):847-50 - PubMed
- Rev Physiol Biochem Pharmacol. 1986;103:1-59 - PubMed
- Exp Brain Res. 1996 Sep;111(2):246-52 - PubMed
- Behav Brain Res. 1981 Mar;2(2):147-63 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Other Literature Sources