A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption - PubMed (original) (raw)
. 1996 Dec 27;271(52):33632-8.
doi: 10.1074/jbc.271.52.33632.
Affiliations
- PMID: 8969232
- DOI: 10.1074/jbc.271.52.33632
Free article
A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption
M Hechenberger et al. J Biol Chem. 1996.
Free article
Abstract
We have cloned four novel members of the CLC family of chloride channels from Arabidopsis thaliana. The four plant genes are homologous to a recently isolated chloride channel gene from tobacco (CLC-Nt1; Lurin, C., Geelen, D., Barbier-Brygoo, H., Guern, J., and Maurel, C. (1996) Plant Cell 8, 701-711) and are about 30% identical in sequence to the most closely related CLC-6 and CLC-7 putative chloride channels from mammalia. AtCLC transcripts are broadly expressed in the plant. Similarly, antibodies against the AtCLC-d protein detected the protein in all tissues, but predominantly in the silique. AtCLC-a and AtCLC-b are highly homologous to each other ( approximately 87% identity), while being approximately 50% identical to either AtCLC-c or AtCLC-d. None of the four cDNAs elicited chloride currents when expressed in Xenopus oocytes, either singly or in combination. Among these genes, only AtCLC-d could functionally substitute for the single yeast CLC protein, restoring iron-limited growth of a strain disrupted for this gene. Introduction of disease causing mutations, identified in human CLC genes, abolished this capacity. Consistent with a similar function of both proteins, the green fluorescent protein-tagged AtCLC-d protein showed the identical localization pattern as the yeast ScCLC protein. This suggests that in Arabidopsis AtCLC-d functions as an intracellular chloride channel.
Similar articles
- Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrate content.
Geelen D, Lurin C, Bouchez D, Frachisse JM, Lelièvre F, Courtial B, Barbier-Brygoo H, Maurel C. Geelen D, et al. Plant J. 2000 Feb;21(3):259-67. doi: 10.1046/j.1365-313x.2000.00680.x. Plant J. 2000. PMID: 10758477 - Residues important for nitrate/proton coupling in plant and mammalian CLC transporters.
Bergsdorf EY, Zdebik AA, Jentsch TJ. Bergsdorf EY, et al. J Biol Chem. 2009 Apr 24;284(17):11184-93. doi: 10.1074/jbc.M901170200. Epub 2009 Mar 4. J Biol Chem. 2009. PMID: 19261613 Free PMC article. - Localization of a putative ClC chloride channel in spinach chloroplasts.
Teardo E, Frare E, Segalla A, De Marco V, Giacometti GM, Szabò I. Teardo E, et al. FEBS Lett. 2005 Sep 12;579(22):4991-6. doi: 10.1016/j.febslet.2005.08.005. FEBS Lett. 2005. PMID: 16115625 - CLC transport proteins in plants.
Zifarelli G, Pusch M. Zifarelli G, et al. FEBS Lett. 2010 May 17;584(10):2122-7. doi: 10.1016/j.febslet.2009.12.042. Epub 2009 Dec 28. FEBS Lett. 2010. PMID: 20036660 Review. - Properties of voltage-gated chloride channels of the ClC gene family.
Jentsch TJ, Günther W, Pusch M, Schwappach B. Jentsch TJ, et al. J Physiol. 1995 Jan;482(P):19S-25S. doi: 10.1113/jphysiol.1995.sp020560. J Physiol. 1995. PMID: 7730971 Free PMC article. Review.
Cited by
- Function of the anion transporter AtCLC-d in the trans-Golgi network.
von der Fecht-Bartenbach J, Bogner M, Krebs M, Stierhof YD, Schumacher K, Ludewig U. von der Fecht-Bartenbach J, et al. Plant J. 2007 May;50(3):466-74. doi: 10.1111/j.1365-313X.2007.03061.x. Epub 2007 Mar 21. Plant J. 2007. PMID: 17376158 Free PMC article. - Chloride Channel Family in the Euhalophyte Suaeda altissima (L.) Pall: Cloning of Novel Members SaCLCa2 and SaCLCc2, General Characterization of the Family.
Nedelyaeva OI, Popova LG, Khramov DE, Volkov VS, Balnokin YV. Nedelyaeva OI, et al. Int J Mol Sci. 2023 Jan 4;24(2):941. doi: 10.3390/ijms24020941. Int J Mol Sci. 2023. PMID: 36674457 Free PMC article. - The chloride channel family gene CLCd negatively regulates pathogen-associated molecular pattern (PAMP)-triggered immunity in Arabidopsis.
Guo W, Zuo Z, Cheng X, Sun J, Li H, Li L, Qiu JL. Guo W, et al. J Exp Bot. 2014 Mar;65(4):1205-15. doi: 10.1093/jxb/ert484. Epub 2014 Jan 21. J Exp Bot. 2014. PMID: 24449384 Free PMC article. - Knock-Down of a Tonoplast Localized Low-Affinity Nitrate Transporter OsNPF7.2 Affects Rice Growth under High Nitrate Supply.
Hu R, Qiu D, Chen Y, Miller AJ, Fan X, Pan X, Zhang M. Hu R, et al. Front Plant Sci. 2016 Oct 25;7:1529. doi: 10.3389/fpls.2016.01529. eCollection 2016. Front Plant Sci. 2016. PMID: 27826301 Free PMC article. - Transcriptome assembly, profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance.
Diray-Arce J, Clement M, Gul B, Khan MA, Nielsen BL. Diray-Arce J, et al. BMC Genomics. 2015 May 6;16(1):353. doi: 10.1186/s12864-015-1553-x. BMC Genomics. 2015. PMID: 25943316 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases