Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-N-acetylglucosamine and the drug fosfomycin - PubMed (original) (raw)
Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-N-acetylglucosamine and the drug fosfomycin
T Skarzynski et al. Structure. 1996.
Free article
Abstract
Background: UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), catalyses the first committed step of bacterial cell wall biosynthesis and is a target for the antibiotic fosfomycin. The only other known enolpyruvyl transferase is 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase, an enzyme involved in the shikimic acid pathway and the target for the herbicide glyphosate. Inhibitors of enolpyruvyl transferases are of biotechnological interest as MurA and EPSP synthase are found exclusively in plants and microbes.
Results: The crystal structure of Escherichia coli MurA complexed with UDP-N-acetylglucosamine (UDP-GlcNAc) and fosfomycin has been determined at 1.8 A resolution. The structure consists of two domains with the active site located between them. The domains have a very similar secondary structure, and the overall protein architecture is similar to that of EPSP synthase. The fosfomycin molecule is covalently bound to the cysteine residue Cys115, whereas UDP-GlcNAc makes several hydrogen-bonding interactions with residues from both domains.
Conclusions: The present structure reveals the mode of binding of the natural substrate UDP-GlcNAc and of the drug fosfomycin, and provides information on the residues involved in catalysis. These results should aid the design of inhibitors which would interfere with enzyme-catalyzed reactions in the early stage of the bacterial cell wall biosynthesis. Furthermore, the crystal structure of MurA provides a model for predicting active-site residues in EPSP synthase that may be involved in catalysis and substrate binding.
Similar articles
- Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is essential for product release.
Eschenburg S, Priestman M, Schönbrunn E. Eschenburg S, et al. J Biol Chem. 2005 Feb 4;280(5):3757-63. doi: 10.1074/jbc.M411325200. Epub 2004 Nov 5. J Biol Chem. 2005. PMID: 15531591 - Structure of MurA (UDP-N-acetylglucosamine enolpyruvyl transferase) from Vibrio fischeri in complex with substrate UDP-N-acetylglucosamine and the drug fosfomycin.
Bensen DC, Rodriguez S, Nix J, Cunningham ML, Tari LW. Bensen DC, et al. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Apr 1;68(Pt 4):382-5. doi: 10.1107/S1744309112006720. Epub 2012 Mar 27. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012. PMID: 22505403 Free PMC article. - Advances in UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) Covalent Inhibition.
de Oliveira MVD, Furtado RM, da Costa KS, Vakal S, Lima AH. de Oliveira MVD, et al. Front Mol Biosci. 2022 Jul 20;9:889825. doi: 10.3389/fmolb.2022.889825. eCollection 2022. Front Mol Biosci. 2022. PMID: 35936791 Free PMC article. Review. - Potential Inhibitors Targeting Escherichia coli UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA): An Overview.
Raina D, Kumar C, Kumar V, Khan IA, Saran S. Raina D, et al. Indian J Microbiol. 2022 Mar;62(1):11-22. doi: 10.1007/s12088-021-00988-6. Epub 2021 Oct 29. Indian J Microbiol. 2022. PMID: 35068599 Free PMC article. Review.
Cited by
- Two active forms of UDP-N-acetylglucosamine enolpyruvyl transferase in gram-positive bacteria.
Du W, Brown JR, Sylvester DR, Huang J, Chalker AF, So CY, Holmes DJ, Payne DJ, Wallis NG. Du W, et al. J Bacteriol. 2000 Aug;182(15):4146-52. doi: 10.1128/JB.182.15.4146-4152.2000. J Bacteriol. 2000. PMID: 10894720 Free PMC article. - Salt-bridge dynamics control substrate-induced conformational change in the membrane transporter GlpT.
Law CJ, Almqvist J, Bernstein A, Goetz RM, Huang Y, Soudant C, Laaksonen A, Hovmöller S, Wang DN. Law CJ, et al. J Mol Biol. 2008 May 9;378(4):828-39. doi: 10.1016/j.jmb.2008.03.029. Epub 2008 Mar 19. J Mol Biol. 2008. PMID: 18395745 Free PMC article. - Fosfomycin resistance mechanisms in Enterobacterales: an increasing threat.
Mattioni Marchetti V, Hrabak J, Bitar I. Mattioni Marchetti V, et al. Front Cell Infect Microbiol. 2023 Jul 4;13:1178547. doi: 10.3389/fcimb.2023.1178547. eCollection 2023. Front Cell Infect Microbiol. 2023. PMID: 37469601 Free PMC article. Review. - Resensitization of Fosfomycin-Resistant Escherichia coli Using the CRISPR System.
Walflor HSM, Lucena ARC, Tuon FF, Medeiros LCS, Faoro H. Walflor HSM, et al. Int J Mol Sci. 2022 Aug 16;23(16):9175. doi: 10.3390/ijms23169175. Int J Mol Sci. 2022. PMID: 36012441 Free PMC article. - Secrets of getting started: Regulation of the first committed step of peptidoglycan synthesis by protein phosphorylation in Enterococcus and other Gram-positive bacteria.
Winkler ME, Joseph M, Tsui HT. Winkler ME, et al. Mol Microbiol. 2023 Dec;120(6):805-810. doi: 10.1111/mmi.15204. Epub 2023 Nov 27. Mol Microbiol. 2023. PMID: 38012814 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases