Mutations affecting the development of the embryonic zebrafish brain - PubMed (original) (raw)
doi: 10.1242/dev.123.1.165.
S C Neuhauss, M Harvey, J Malicki, L Solnica-Krezel, D Y Stainier, F Zwartkruis, S Abdelilah, D L Stemple, Z Rangini, H Yang, W Driever
Affiliations
- PMID: 9007238
- DOI: 10.1242/dev.123.1.165
Free article
Mutations affecting the development of the embryonic zebrafish brain
A F Schier et al. Development. 1996 Dec.
Free article
Abstract
In a large scale mutagenesis screen for embryonic mutants in zebrafish, we have identified 63 mutations in 24 loci affecting the morphogenesis of the zebrafish brain. The expression of marker genes and the integrity of the axonal scaffold have been studied to investigate abnormalities in regionalization, neurogenesis and axonogenesis in the brain. Mutants can be broadly classified into two groups, one affecting regionalization along the anterior-posterior or dorsal-ventral axis, and the other affecting general features of brain morphology. The first group includes one locus that is required to generate the anlage of the midbrain-hindbrain boundary region at the beginning of somitogenesis. Four loci were identified that affect dorsal-ventral patterning of the brain, including the previously described cyclops locus. Mutant embryos of this class show a reduction of ventral neuroectodermal structures and variable fusion of the eyes. The second group includes a large class of mutations affecting the formation of brain ventricles. Analysis of this class reveals the requirement of a functional cardiovascular system for ventricle enlargement during embryogenesis. Mutations in one locus lead to the formation of supernumerary primary neurons, a phenotype reminiscent of neurogenic mutants in Drosophila. Other mutant phenotypes described here range from abnormalities in the fasciculation and outgrowth of axons to defects in the diameter of the neural tube. The identified loci establish the genetic foundation for a further analysis of the development of the zebrafish embryonic brain.
Similar articles
- Mutations affecting development of the midline and general body shape during zebrafish embryogenesis.
Brand M, Heisenberg CP, Warga RM, Pelegri F, Karlstrom RO, Beuchle D, Picker A, Jiang YJ, Furutani-Seiki M, van Eeden FJ, Granato M, Haffter P, Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Nüsslein-Volhard C. Brand M, et al. Development. 1996 Dec;123:129-42. doi: 10.1242/dev.123.1.129. Development. 1996. PMID: 9007235 - Mutations affecting neurogenesis and brain morphology in the zebrafish, Danio rerio.
Jiang YJ, Brand M, Heisenberg CP, Beuchle D, Furutani-Seiki M, Kelsh RN, Warga RM, Granato M, Haffter P, Hammerschmidt M, Kane DA, Mullins MC, Odenthal J, van Eeden FJ, Nüsslein-Volhard C. Jiang YJ, et al. Development. 1996 Dec;123:205-16. doi: 10.1242/dev.123.1.205. Development. 1996. PMID: 9007241 - Mutations affecting the formation of the notochord in the zebrafish, Danio rerio.
Odenthal J, Haffter P, Vogelsang E, Brand M, van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Warga RM, Allende ML, Weinberg ES, Nüsslein-Volhard C. Odenthal J, et al. Development. 1996 Dec;123:103-15. doi: 10.1242/dev.123.1.103. Development. 1996. PMID: 9007233 - Midline structures and central nervous system coordinates in zebrafish.
Hatta K, Kimmel CB. Hatta K, et al. Perspect Dev Neurobiol. 1993;1(4):257-68. Perspect Dev Neurobiol. 1993. PMID: 7916258 Review. - The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish.
Fuentes R, Tajer B, Kobayashi M, Pelliccia JL, Langdon Y, Abrams EW, Mullins MC. Fuentes R, et al. Curr Top Dev Biol. 2020;140:341-389. doi: 10.1016/bs.ctdb.2020.05.002. Epub 2020 Jun 16. Curr Top Dev Biol. 2020. PMID: 32591080 Review.
Cited by
- Rearing conditions (isolated versus group rearing) affect rotenone-induced changes in the behavior of zebrafish (Danio rerio) embryos in the coiling assay.
von Hellfeld R, Gade C, Leist M, Braunbeck T. von Hellfeld R, et al. Environ Sci Pollut Res Int. 2024 Sep;31(43):55624-55635. doi: 10.1007/s11356-024-34870-x. Epub 2024 Sep 6. Environ Sci Pollut Res Int. 2024. PMID: 39240433 Free PMC article. - CRIMP: a CRISPR/Cas9 insertional mutagenesis protocol and toolkit.
Miles LB, Calcinotto V, Oveissi S, Serrano RJ, Sonntag C, Mulia O, Lee C, Bryson-Richardson RJ. Miles LB, et al. Nat Commun. 2024 Jun 12;15(1):5011. doi: 10.1038/s41467-024-49341-7. Nat Commun. 2024. PMID: 38866742 Free PMC article. - Transcriptional Regulators with Broad Expression in the Zebrafish Spinal Cord.
England SJ, Campbell PC, Banerjee S, Bates RL, Grieb G, Fancher WF, Lewis KE. England SJ, et al. bioRxiv [Preprint]. 2024 May 19:2024.02.14.580357. doi: 10.1101/2024.02.14.580357. bioRxiv. 2024. PMID: 38405913 Free PMC article. Updated. Preprint. - The TDRD3-USP9X complex and MIB1 regulate TOP3B homeostasis and prevent deleterious TOP3B cleavage complexes.
Saha S, Huang SN, Yang X, Saha LK, Sun Y, Khandagale P, Jenkins LM, Pommier Y. Saha S, et al. Nat Commun. 2023 Nov 18;14(1):7524. doi: 10.1038/s41467-023-43151-z. Nat Commun. 2023. PMID: 37980342 Free PMC article. - A Critical Review of Zebrafish Neurological Disease Models-1. The Premise: Neuroanatomical, Cellular and Genetic Homology and Experimental Tractability.
Burgess HA, Burton EA. Burgess HA, et al. Oxf Open Neurosci. 2023 Jan 6;2:kvac018. doi: 10.1093/oons/kvac018. eCollection 2023. Oxf Open Neurosci. 2023. PMID: 37649777 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases