Mutations affecting the cardiovascular system and other internal organs in zebrafish - PubMed (original) (raw)
doi: 10.1242/dev.123.1.293.
P Haffter, J Odenthal, E Vogelsang, M Brand, F J van Eeden, M Furutani-Seiki, M Granato, M Hammerschmidt, C P Heisenberg, Y J Jiang, D A Kane, R N Kelsh, M C Mullins, C Nüsslein-Volhard
Affiliations
- PMID: 9007249
- DOI: 10.1242/dev.123.1.293
Mutations affecting the cardiovascular system and other internal organs in zebrafish
J N Chen et al. Development. 1996 Dec.
Abstract
In a screen for early developmental mutants of the zebrafish, we have identified mutations specifically affecting the internal organs. We identified 53 mutations affecting the cardiovascular system. Nine of them affect specific landmarks of heart morphogenesis. Mutations in four genes cause a failure in the fusion of the bilateral heart primordia, resulting in cardia bifida. In lonely atrium, no heart venticle is visible and the atrium is directly fused to the outflow tract. In the overlooped mutant, the relative position of the two heart chambers is distorted. The heart is enormously enlarged in the santa mutant. In two mutants, scotch tape and superglue, the cardiac jelly between the two layers of the heart is significantly reduced. We also identified a number of mutations affecting the function of the heart. The mutations affecting heart function can be subdivided into two groups, one affecting heart contraction and another affecting the rhythm of the heart beat. Among the contractility group of mutants are 5 with no heart beat at all and 15 with a reduced heart beat of one or both chambers. 6 mutations are in the rhythmicity group and specifically affect the beating pattern of the heart. Mutations in two genes, bypass and kurzschluss, cause specific defects in the circulatory system. In addition to the heart mutants, we identified 23 mutations affecting the integrity of the liver, the intestine or the kidney. In this report, we demonstrate that it is feasible to screen for genes specific for the patterning or function of certain internal organs in the zebrafish. The mutations presented here could serve as an entry point to the establishment of a genetic hierarchy underlying organogenesis.
Similar articles
- Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo.
Stainier DY, Fouquet B, Chen JN, Warren KS, Weinstein BM, Meiler SE, Mohideen MA, Neuhauss SC, Solnica-Krezel L, Schier AF, Zwartkruis F, Stemple DL, Malicki J, Driever W, Fishman MC. Stainier DY, et al. Development. 1996 Dec;123:285-92. doi: 10.1242/dev.123.1.285. Development. 1996. PMID: 9007248 - Mutation of weak atrium/atrial myosin heavy chain disrupts atrial function and influences ventricular morphogenesis in zebrafish.
Berdougo E, Coleman H, Lee DH, Stainier DY, Yelon D. Berdougo E, et al. Development. 2003 Dec;130(24):6121-9. doi: 10.1242/dev.00838. Epub 2003 Oct 22. Development. 2003. PMID: 14573521 - Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish.
Yelon D, Horne SA, Stainier DY. Yelon D, et al. Dev Biol. 1999 Oct 1;214(1):23-37. doi: 10.1006/dbio.1999.9406. Dev Biol. 1999. PMID: 10491254 - Patterning during organogenesis: genetic analysis of cardiac chamber formation.
Yelon D, Stainier DY. Yelon D, et al. Semin Cell Dev Biol. 1999 Feb;10(1):93-8. doi: 10.1006/scdb.1998.0278. Semin Cell Dev Biol. 1999. PMID: 10355033 Review. - Zebrafish: the complete cardiovascular compendium.
MacRae CA, Fishman MC. MacRae CA, et al. Cold Spring Harb Symp Quant Biol. 2002;67:301-7. doi: 10.1101/sqb.2002.67.301. Cold Spring Harb Symp Quant Biol. 2002. PMID: 12858553 Review. No abstract available.
Cited by
- Genetic interaction between pku300 and fbn2b controls endocardial cell proliferation and valve development in zebrafish.
Wang X, Yu Q, Wu Q, Bu Y, Chang NN, Yan S, Zhou XH, Zhu X, Xiong JW. Wang X, et al. J Cell Sci. 2013 Mar 15;126(Pt 6):1381-91. doi: 10.1242/jcs.116996. Epub 2013 Feb 15. J Cell Sci. 2013. PMID: 23418350 Free PMC article. - FAM222B Is Not a Likely Novel Candidate Gene for Cerebral Cavernous Malformations.
Spiegler S, Kirchmaier B, Rath M, Korenke GC, Tetzlaff F, van de Vorst M, Neveling K, Acker-Palmer A, Kuss AW, Gilissen C, Fischer A, Schulte-Merker S, Felbor U. Spiegler S, et al. Mol Syndromol. 2016 Jul;7(3):144-52. doi: 10.1159/000446884. Epub 2016 Jun 18. Mol Syndromol. 2016. PMID: 27587990 Free PMC article. - Strategies for analyzing cardiac phenotypes in the zebrafish embryo.
Houk AR, Yelon D. Houk AR, et al. Methods Cell Biol. 2016;134:335-68. doi: 10.1016/bs.mcb.2016.03.002. Epub 2016 Apr 4. Methods Cell Biol. 2016. PMID: 27312497 Free PMC article. - Cardiac hypertrophy involves both myocyte hypertrophy and hyperplasia in anemic zebrafish.
Sun X, Hoage T, Bai P, Ding Y, Chen Z, Zhang R, Huang W, Jahangir A, Paw B, Li YG, Xu X. Sun X, et al. PLoS One. 2009 Aug 12;4(8):e6596. doi: 10.1371/journal.pone.0006596. PLoS One. 2009. PMID: 19672293 Free PMC article. - Distinct troponin C isoform requirements in cardiac and skeletal muscle.
Sogah VM, Serluca FC, Fishman MC, Yelon DL, Macrae CA, Mably JD. Sogah VM, et al. Dev Dyn. 2010 Nov;239(11):3115-23. doi: 10.1002/dvdy.22445. Dev Dyn. 2010. PMID: 20925115 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases