A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces - PubMed (original) (raw)
A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces
M Hussain et al. Infect Immun. 1997 Feb.
Abstract
Two distinct pathogenic mechanisms, adhesion to polymer surfaces and subsequent accumulation of sessile bacterial cells, are considered important pathogenic steps in foreign body infections caused by Staphylococcus epidermidis. By using mitomycin mutagenesis, we have recently generated a mutant, strain M7, from S. epidermidis RP62A which is unaffected in adhesion but deficient in accumulation on glass or polystyrene surfaces and lacks a 115-kDa extracellular protein (designated the 140-kDa antigen; F. Schumacher-Perdreau, C. Heilmann, G. Peters, F. Götz, and G. Pulverer, FEMS Microbiol. Lett. 117:71-78, 1994). To evaluate the role of this protein in accumulation, we harvested extracellular proteins from S. epidermidis RP62A grown on dialysis membranes placed over chemically defined medium, purified the protein by using ion-exchange chromatography, determined its N-terminal amino acid sequence, and raised antiserum in rabbits. The antibody recognized only a single band in a Western immunoblot of the crude extracellular extract. With the microtiter biofilm test, antiserum at a dilution of < or =1:1,000 blocked accumulation of RP62A up to 98% whereas preimmune serum did not. The 140-kDa antigen was found only in extracellular products from bacteria grown under sessile conditions. Of 58 coagulase-negative clinical isolates, 32 strains were 140-kDa antigen positive and produced significantly larger amounts of biofilm than the 26 strains that were 140-kDa antigen negative. The 140-kDa protein appears to be biochemically and functionally unrelated to any previously described factors associated with biofilm formation. Thus, the 140-kDa antigen, referred to as accumulation-associated protein, may be a factor essential in S. epidermidis accumulation and, due to its immunogenicity, may allow the development of novel immunotherapeutic strategies for prevention of foreign body infection.
Similar articles
- Inhibition of biofilm formation by monoclonal antibodies against Staphylococcus epidermidis RP62A accumulation-associated protein.
Sun D, Accavitti MA, Bryers JD. Sun D, et al. Clin Diagn Lab Immunol. 2005 Jan;12(1):93-100. doi: 10.1128/CDLI.12.1.93-100.2005. Clin Diagn Lab Immunol. 2005. PMID: 15642991 Free PMC article. - Monoclonal antibodies against accumulation-associated protein affect EPS biosynthesis and enhance bacterial accumulation of Staphylococcus epidermidis.
Hu J, Xu T, Zhu T, Lou Q, Wang X, Wu Y, Huang R, Liu J, Liu H, Yu F, Ding B, Huang Y, Tong W, Qu D. Hu J, et al. PLoS One. 2011;6(6):e20918. doi: 10.1371/journal.pone.0020918. Epub 2011 Jun 7. PLoS One. 2011. PMID: 21687690 Free PMC article. - Molecular cloning of a 32-kilodalton lipoprotein component of a novel iron-regulated Staphylococcus epidermidis ABC transporter.
Cockayne A, Hill PJ, Powell NB, Bishop K, Sims C, Williams P. Cockayne A, et al. Infect Immun. 1998 Aug;66(8):3767-74. doi: 10.1128/IAI.66.8.3767-3774.1998. Infect Immun. 1998. PMID: 9673260 Free PMC article. - Molecular mechanisms of Staphylococcus epidermidis biofilm formation.
Mack D. Mack D. J Hosp Infect. 1999 Dec;43 Suppl:S113-25. doi: 10.1016/s0195-6701(99)90074-9. J Hosp Infect. 1999. PMID: 10658767 Review. - Antibiofilm activity of three Actinomycete strains against Staphylococcus epidermidis.
Xie TT, Zeng H, Ren XP, Wang N, Chen ZJ, Zhang Y, Chen W. Xie TT, et al. Lett Appl Microbiol. 2019 Jan;68(1):73-80. doi: 10.1111/lam.13087. Epub 2018 Nov 22. Lett Appl Microbiol. 2019. PMID: 30338533 Review.
Cited by
- Infections associated with medical devices: pathogenesis, management and prophylaxis.
von Eiff C, Jansen B, Kohnen W, Becker K. von Eiff C, et al. Drugs. 2005;65(2):179-214. doi: 10.2165/00003495-200565020-00003. Drugs. 2005. PMID: 15631541 Review. - Lack of Direct Correlation between Biofilm Formation and Antimicrobial Resistance in Clinical Staphylococcus epidermidis Isolates from an Italian Hospital.
Carcione D, Leccese G, Conte G, Rossi E, Intra J, Bonomi A, Sabella S, Moreo M, Landini P, Brilli M, Paroni M. Carcione D, et al. Microorganisms. 2022 Jun 6;10(6):1163. doi: 10.3390/microorganisms10061163. Microorganisms. 2022. PMID: 35744681 Free PMC article. - Identification of immunogenic and serum binding proteins of Staphylococcus epidermidis.
Sellman BR, Howell AP, Kelly-Boyd C, Baker SM. Sellman BR, et al. Infect Immun. 2005 Oct;73(10):6591-600. doi: 10.1128/IAI.73.10.6591-6600.2005. Infect Immun. 2005. PMID: 16177335 Free PMC article. - Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms.
Izano EA, Amarante MA, Kher WB, Kaplan JB. Izano EA, et al. Appl Environ Microbiol. 2008 Jan;74(2):470-6. doi: 10.1128/AEM.02073-07. Epub 2007 Nov 26. Appl Environ Microbiol. 2008. PMID: 18039822 Free PMC article. - Staphylococcus colonization of the skin and antimicrobial peptides.
Otto M. Otto M. Expert Rev Dermatol. 2010 Apr;5(2):183-195. doi: 10.1586/edm.10.6. Expert Rev Dermatol. 2010. PMID: 20473345 Free PMC article.
References
- J Immunol. 1970 Aug;105(2):389-95 - PubMed
- Infect Immun. 1994 Aug;62(8):3244-53 - PubMed
- Zentralbl Bakteriol Mikrobiol Hyg B. 1981;173(5):293-9 - PubMed
- Infect Immun. 1982 Jul;37(1):318-26 - PubMed
- J Infect Dis. 1982 Oct;146(4):479-82 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases