Negative protein 1, which is required for function of the chicken lysozyme gene silencer in conjunction with hormone receptors, is identical to the multivalent zinc finger repressor CTCF - PubMed (original) (raw)
Negative protein 1, which is required for function of the chicken lysozyme gene silencer in conjunction with hormone receptors, is identical to the multivalent zinc finger repressor CTCF
M Burcin et al. Mol Cell Biol. 1997 Mar.
Abstract
The transcriptional repressor negative protein 1 (NeP1) binds specifically to the F1 element of the chicken lysozyme gene silencer and mediates synergistic repression by v-ERBA, thyroid hormone receptor, or retinoic acid receptor. Another protein, CCCTC-binding factor (CTCF), specifically binds to 50-bp-long sequences that contain repetitive CCCTC elements in the vicinity of vertebrate c-myc genes. Previously cloned chicken, mouse, and human CTCF cDNAs encode a highly conserved 11-Zn-finger protein. Here, NeP1 was purified and DNA bases critical for NeP1-F1 interaction were determined. NeP1 is found to bind a 50-bp stretch of nucleotides without any obvious sequence similarity to known CTCF binding sequences. Despite this remarkable difference, these two proteins are identical. They have the same molecular weight, and NeP1 contains peptide sequences which are identical to sequences in CTCF. Moreover, NeP1 and CTCF specifically recognize each other's binding DNA sequence and induce identical conformational alterations in the F1 DNA. Therefore, we propose to replace the name NeP1 with CTCF. To analyze the puzzling sequence divergence in CTCF binding sites, we studied the DNA binding of 12 CTCF deletions with serially truncated Zn fingers. While fingers 4 to 11 are indispensable for CTCF binding to the human c-myc P2 promoter site A, a completely different combination of fingers, namely, 1 to 8 or 5 to 11, was sufficient to bind the lysozyme silencer site F1. Thus, CTCF is a true multivalent factor with multiple repressive functions and multiple sequence specificities.
Similar articles
- An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes.
Filippova GN, Fagerlie S, Klenova EM, Myers C, Dehner Y, Goodwin G, Neiman PE, Collins SJ, Lobanenkov VV. Filippova GN, et al. Mol Cell Biol. 1996 Jun;16(6):2802-13. doi: 10.1128/MCB.16.6.2802. Mol Cell Biol. 1996. PMID: 8649389 Free PMC article. - NeP1. A ubiquitous transcription factor synergizes with v-ERBA in transcriptional silencing.
Köhne AC, Baniahmad A, Renkawitz R. Köhne AC, et al. J Mol Biol. 1993 Aug 5;232(3):747-55. doi: 10.1006/jmbi.1993.1428. J Mol Biol. 1993. PMID: 8102652 - DNA bending by the silencer protein NeP1 is modulated by TR and RXR.
Arnold R, Burcin M, Kaiser B, Muller M, Renkawitz R. Arnold R, et al. Nucleic Acids Res. 1996 Jul 15;24(14):2640-7. doi: 10.1093/nar/24.14.2640. Nucleic Acids Res. 1996. PMID: 8758989 Free PMC article. - Modulation of thyroid hormone receptor silencing function by co-repressors and a synergizing transcription factor.
Lutz M, Baniahmad A, Renkawitz R. Lutz M, et al. Biochem Soc Trans. 2000;28(4):386-9. Biochem Soc Trans. 2000. PMID: 10961925 Review. - Factors influencing nuclear receptors in transcriptional repression.
Burcin M, Köhne AC, Runge D, Steiner C, Renkawitz R. Burcin M, et al. Semin Cancer Biol. 1994 Oct;5(5):337-46. Semin Cancer Biol. 1994. PMID: 7849262 Review.
Cited by
- CTCF shapes chromatin structure and gene expression in health and disease.
Dehingia B, Milewska M, Janowski M, Pękowska A. Dehingia B, et al. EMBO Rep. 2022 Sep 5;23(9):e55146. doi: 10.15252/embr.202255146. Epub 2022 Aug 22. EMBO Rep. 2022. PMID: 35993175 Free PMC article. Review. - NPM1c impedes CTCF functions through cytoplasmic mislocalization in acute myeloid leukemia.
Wang AJ, Han Y, Jia N, Chen P, Minden MD. Wang AJ, et al. Leukemia. 2020 May;34(5):1278-1290. doi: 10.1038/s41375-019-0681-8. Epub 2019 Dec 12. Leukemia. 2020. PMID: 31831844 - DNA recognition patterns of the multi-zinc-finger protein CTCF: a mutagenesis study.
Guo J, Li N, Han J, Pei F, Wang T, Lu D, Jiang J. Guo J, et al. Acta Pharm Sin B. 2018 Oct;8(6):900-908. doi: 10.1016/j.apsb.2018.08.007. Epub 2018 Aug 31. Acta Pharm Sin B. 2018. PMID: 30505659 Free PMC article. - Choice of binding sites for CTCFL compared to CTCF is driven by chromatin and by sequence preference.
Bergmaier P, Weth O, Dienstbach S, Boettger T, Galjart N, Mernberger M, Bartkuhn M, Renkawitz R. Bergmaier P, et al. Nucleic Acids Res. 2018 Aug 21;46(14):7097-7107. doi: 10.1093/nar/gky483. Nucleic Acids Res. 2018. PMID: 29860503 Free PMC article. - Crossed wires: 3D genome misfolding in human disease.
Norton HK, Phillips-Cremins JE. Norton HK, et al. J Cell Biol. 2017 Nov 6;216(11):3441-3452. doi: 10.1083/jcb.201611001. Epub 2017 Aug 30. J Cell Biol. 2017. PMID: 28855250 Free PMC article. Review.
References
- Eur J Biochem. 1986 Aug 15;159(1):181-8 - PubMed
- Genes Dev. 1995 Mar 1;9(5):559-72 - PubMed
- Cell. 1990 May 4;61(3):505-14 - PubMed
- Trends Genet. 1990 Jun;6(6):192-7 - PubMed
- Oncogene. 1990 Dec;5(12):1743-53 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials