Early activation of microglia in the pathogenesis of fatal murine cerebral malaria - PubMed (original) (raw)

Early activation of microglia in the pathogenesis of fatal murine cerebral malaria

I M Medana et al. Glia. 1997 Feb.

Abstract

Microglia are pluripotent members of the macrophage/monocyte lineage that can respond in several ways to pathological changes in the central nervous system. To determine their role in the pathogenesis of fatal murine cerebral malaria (FMCM) we have conducted a detailed study of the changes in morphology and distribution of retinal microglia during the progression of the disease. Adult CBA/T6 mice were inoculated with Plasmodium berghei ANKA. These mice died 7 days post inoculation (p.i.) with the parasite while exhibiting cerebral symptoms, increased permeability of the blood-brain barrier, and monocyte adherence to the vascular endothelium. Mice were injected i.v. with Monastral blue 2 h prior to sacrifice to identify "activated" monocytes, and their isolated retinae were incubated with the Griffonia simplicifolia (GS) lectin or reacted for the nucleoside diphosphatase enzyme to visualize microglia and the vasculature. Changes in microglial morphology were seen within 2-3 days p.i., that is, at least 3 days prior to the onset of cerebral symptoms and 4 days before death. Morphological changes included retraction of ramified processes, soma enlargement, an increasingly amoeboid appearance, and vacuolation. There was also increased staining intensity and redistribution of "activated" microglia toward retinal vessels, but no increase in density of NDPase-positive cells. The GS lectin only labeled a small population of microglia in the uninfected adult mouse retina. However, there was a striking increase in the focal density of GS-positive microglia during the progression of the disease. Extravasation of monocytes also was observed prior to the onset of cerebral symptoms. These results provide the first evidence that microglial activation is a critical component of the pathological process during FMCM.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources