Effect of pulmonary emphysema on diaphragm capillary geometry - PubMed (original) (raw)
Effect of pulmonary emphysema on diaphragm capillary geometry
D C Poole et al. J Appl Physiol (1985). 1997 Feb.
Free article
Abstract
In emphysema, the diaphragm shortens by losing sarcomeres. We hypothesized that unless capillaries undergo a similar shortening, capillary geometry must be altered. Without quantifying this geometry, capillary length and surface area per fiber volume, which are critical measurements of the structural potential for blood-tissue exchange, cannot be resolved. Five months after intratracheal elastase (E) or saline (control; C) instillation, diaphragms from male Syrian golden hamsters were glutaraldehyde perfusion fixed in situ at reference lung positions (residual volume, functional residual capacity, total lung capacity) to provide diaphragms fixed over a range of sarcomere lengths. Subsequently, diaphragms were processed for electron microscopy and analyzed morphometrically. Emphysema increased lung volume changes from -20 to 25 cmH2O airway pressure (i.e., passive vital capacity) and excised lung volume (both P < 0.001). In each region of the costal diaphragm (i.e., ventral, medial, dorsal), sarcomere number was reduced (all P < 0.05). Capillary-to-fiber ratio increased (C = 2.2 +/- 0.1, E = 2.8 +/- 0.1; P < 0.01) and fibers hypertrophied (C = 815 +/- 35, E = 987 +/- 67 microns2; P < 0.05; both values at 2.5 microns sarcomere length). Capillary geometry was markedly altered by the loss of sarcomeres in series. Specifically, the additional capillary length derived from capillary tortuosity and branching was increased by 183% at 2.5 microns sarcomere length compared with C values (C, 359 +/- 43; E, 1,020 +/- 158 mm-2, P < 0.01). This significantly increased total capillary length (C, 3,115 +/- 173; E, 3,851 +/- 219mm-2 at 2.5 microns, P < 0.05) and surface area (C, 456 +/- 13; E, 519 +/- 24 cm-1, P < 0.05) per fiber volume. Thus emphysema substantially alters diaphragm capillary geometry and augments the capillary length and surface area available for blood-tissue exchange.
Similar articles
- Capillary and fiber geometry in rat diaphragm perfusion fixed in situ at different sarcomere lengths.
Poole DC, Mathieu-Costello O. Poole DC, et al. J Appl Physiol (1985). 1992 Jul;73(1):151-9. doi: 10.1152/jappl.1992.73.1.151. J Appl Physiol (1985). 1992. PMID: 1506362 - Myosin and actin filament lengths in diaphragms from emphysematous hamsters.
Poole DC, Lieber RL, Mathieu-Costello O. Poole DC, et al. J Appl Physiol (1985). 1994 Mar;76(3):1220-5. doi: 10.1152/jappl.1994.76.3.1220. J Appl Physiol (1985). 1994. PMID: 8005866 - Effects of emphysema on diaphragm blood flow during exercise.
Sexton WL, Poole DC. Sexton WL, et al. J Appl Physiol (1985). 1998 Mar;84(3):971-9. doi: 10.1152/jappl.1998.84.3.971. J Appl Physiol (1985). 1998. PMID: 9480959 - The diaphragm in emphysema.
Ruel M, Deslauriers J, Maltais F. Ruel M, et al. Chest Surg Clin N Am. 1998 May;8(2):381-99. Chest Surg Clin N Am. 1998. PMID: 9619311 Review. - Hyperinflation and respiratory muscle interaction.
Decramer M. Decramer M. Eur Respir J. 1997 Apr;10(4):934-41. Eur Respir J. 1997. PMID: 9150337 Review.
Cited by
- Role of Nrf2 and exercise in alleviating COPD-induced skeletal muscle dysfunction.
Jiang M, Li P, Wang Y, Cao Y, Han X, Jiang L, Liu X, Wu W. Jiang M, et al. Ther Adv Respir Dis. 2023 Jan-Dec;17:17534666231208633. doi: 10.1177/17534666231208633. Ther Adv Respir Dis. 2023. PMID: 37966017 Free PMC article. Review. - Respiratory muscle fiber remodeling in chronic hyperinflation: dysfunction or adaptation?
Clanton TL, Levine S. Clanton TL, et al. J Appl Physiol (1985). 2009 Jul;107(1):324-35. doi: 10.1152/japplphysiol.00173.2009. Epub 2009 Apr 9. J Appl Physiol (1985). 2009. PMID: 19359619 Free PMC article. Review. - Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans.
Erzurum SC, Ghosh S, Janocha AJ, Xu W, Bauer S, Bryan NS, Tejero J, Hemann C, Hille R, Stuehr DJ, Feelisch M, Beall CM. Erzurum SC, et al. Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17593-8. doi: 10.1073/pnas.0707462104. Epub 2007 Oct 30. Proc Natl Acad Sci U S A. 2007. PMID: 17971439 Free PMC article. - Skeletal muscle microvascular and interstitial PO2 from rest to contractions.
Hirai DM, Craig JC, Colburn TD, Eshima H, Kano Y, Sexton WL, Musch TI, Poole DC. Hirai DM, et al. J Physiol. 2018 Mar 1;596(5):869-883. doi: 10.1113/JP275170. Epub 2018 Jan 30. J Physiol. 2018. PMID: 29288568 Free PMC article. - Skeletal muscle interstitial O2 pressures: bridging the gap between the capillary and myocyte.
Hirai DM, Colburn TD, Craig JC, Hotta K, Kano Y, Musch TI, Poole DC. Hirai DM, et al. Microcirculation. 2019 Jul;26(5):e12497. doi: 10.1111/micc.12497. Epub 2018 Oct 10. Microcirculation. 2019. PMID: 30120845 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources