Substrate and inhibitor specificity of interleukin-1 beta-converting enzyme and related caspases - PubMed (original) (raw)
. 1997 Mar 14;272(11):7223-8.
doi: 10.1074/jbc.272.11.7223.
Affiliations
- PMID: 9054418
- DOI: 10.1074/jbc.272.11.7223
Substrate and inhibitor specificity of interleukin-1 beta-converting enzyme and related caspases
N Margolin et al. J Biol Chem. 1997.
Abstract
Interleukin-1beta-converting enzyme (ICE) is a novel cysteine protease responsible for the cleavage of pre-interleukin-1beta (pre-IL-1beta) to the mature cytokine and a member of a family of related proteases (the caspases) that includes the Caenorhabditis elegans cell death gene product, CED-3. In addition to their sequence homology, these cysteine proteases display an unusual substrate specificity for peptidyl sequences with a P1 aspartate residue. We have examined the kinetics of processing pre-IL-1beta to the mature form by ICE and three of its homologs, TX, CPP-32, and CMH-1. Of the ICE homologs, only TX processes pre-IL-1beta, albeit with a catalytic efficiency 250-fold less than ICE itself. We also investigated the ability of these four proteases to process poly(ADP-ribose) polymerase, a DNA repair enzyme that is cleaved within minutes of the onset of apoptosis. Every caspase examined cleaves PARP, with catalytic efficiencies ranging from 2.3 x 10(6) M-1 s-1 for CPP32 to 1.0 x 10(3) M-1 s-1 for TX. In addition, we report kinetic constants for several reversible inhibitors and irreversible inactivators, which have been used to implicate one or more caspases in the apoptotic proteolysis cascade. Ac-Asp-Glu-Val-Asp aldehyde (DEVD-CHO) is a potent inhibitor of CPP-32 with a Ki value of 0.5 nM, but is also potent as inhibitor of CMH-1 (Ki = 35 nM) and ICE (Ki = 15 nM). The x-ray crystal structure of DEVD-CHO complexed to ICE presented here reveals electrostatic interactions not present in the Ac-YVAD-CHO co-complex structure (Wilson, K. P., Black, J.-A. F., Thomson, J. A., Kim, E. E., Griffith, J. P., Navia, M. A., Murcko, M. A., Chambers, S. P., Aldape, R. A., Raybuck, S. A., and Livingston, D. J. (1994) Nature 370, 270-275), accounting for the surprising potency of this inhibitor against ICE.
Similar articles
- Peptidyl beta-homo-aspartals (3-amino-4-carboxybutyraldehydes): new specific inhibitors of caspases.
Bajusz S, Fauszt I, Németh K, Barabás E, Juhász A, Patthy M, Bauer PI. Bajusz S, et al. Biopolymers. 1999;51(1):109-18. doi: 10.1002/(SICI)1097-0282(1999)51:1<109::AID-BIP12>3.0.CO;2-S. Biopolymers. 1999. PMID: 10380358 - Enzymatic activity of two caspases related to interleukin-1beta-converting enzyme.
Fassy F, Krebs O, Rey H, Komara B, Gillard C, Capdevila C, Yea C, Faucheu C, Blanchet AM, Miossec C, Diu-Hercend A. Fassy F, et al. Eur J Biochem. 1998 Apr 1;253(1):76-83. doi: 10.1046/j.1432-1327.1998.2530076.x. Eur J Biochem. 1998. PMID: 9578463 - The apoptotic cysteine protease CPP32.
Kumar S. Kumar S. Int J Biochem Cell Biol. 1997 Mar;29(3):393-6. doi: 10.1016/s1357-2725(96)00146-x. Int J Biochem Cell Biol. 1997. PMID: 9202418 Review. - Role of interleukin-1 beta converting enzyme (ICE) in leukemia.
Estrov Z, Talpaz M. Estrov Z, et al. Cytokines Mol Ther. 1996 Mar;2(1):1-11. Cytokines Mol Ther. 1996. PMID: 9384684 Review.
Cited by
- Poly(ADP-ribose) polymerase-1 affects vasopressin-mediated AQP2 expression in collecting duct cells of the kidney.
Jang HJ, Park E, Jung HJ, Kwon TH. Jang HJ, et al. Am J Physiol Renal Physiol. 2024 Jan 1;326(1):F69-F85. doi: 10.1152/ajprenal.00144.2023. Epub 2023 Oct 19. Am J Physiol Renal Physiol. 2024. PMID: 37855039 Free PMC article. - Screening of ferrocenyl-phosphines identifies a gold-coordinated derivative as a novel anticancer agent for hematological malignancies.
Verma NK, Sadeer A, Kizhakeyil A, Pang JH, Angela Chiu QY, Tay SW, Kumar P, Pullarkat SA. Verma NK, et al. RSC Adv. 2018 Aug 14;8(51):28960-28968. doi: 10.1039/c8ra05224g. eCollection 2018 Aug 14. RSC Adv. 2018. PMID: 35547965 Free PMC article. - Apoptosis Pathways Triggered by a Potent Antiproliferative Hybrid Chalcone on Human Melanoma Cells.
Rodríguez I, Saavedra E, Del Rosario H, Perdomo J, Quintana J, Prencipe F, Oliva P, Romagnoli R, Estévez F. Rodríguez I, et al. Int J Mol Sci. 2021 Dec 15;22(24):13462. doi: 10.3390/ijms222413462. Int J Mol Sci. 2021. PMID: 34948260 Free PMC article. - Serum proteome modulations upon treatment provides biological insight on response to treatment in relapsed mantle cell lymphoma.
Lokhande L, Kuci Emruli V, Eskelund CW, Kolstad A, Hutchings M, Räty R, Niemann CU, Grønbaek K, Jerkeman M, Ek S. Lokhande L, et al. Cancer Rep (Hoboken). 2022 Jul;5(7):e1524. doi: 10.1002/cnr2.1524. Epub 2021 Jul 28. Cancer Rep (Hoboken). 2022. PMID: 34319003 Free PMC article. - IRE1 Alpha/XBP1 Axis Sustains Primary Effusion Lymphoma Cell Survival by Promoting Cytokine Release and STAT3 Activation.
Gonnella R, Gilardini Montani MS, Guttieri L, Romeo MA, Santarelli R, Cirone M. Gonnella R, et al. Biomedicines. 2021 Jan 27;9(2):118. doi: 10.3390/biomedicines9020118. Biomedicines. 2021. PMID: 33513694 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Research Materials