CpG methylation remodels chromatin structure in vitro - PubMed (original) (raw)
. 1997 Mar 28;267(2):276-88.
doi: 10.1006/jmbi.1997.0899.
Affiliations
- PMID: 9096225
- DOI: 10.1006/jmbi.1997.0899
CpG methylation remodels chromatin structure in vitro
C Davey et al. J Mol Biol. 1997.
Abstract
One of the mechanisms proposed to explain how CpG methylation effects gene repression invokes a DNA methylation-determined chromatin structure. Previous work implied that this DNA modification does not influence nucleosome formation in vitro, thus current models propose that certain non-histone proteins or a preferential affinity by linker histones for methylated DNA may mediate changes in chromatin structure. We have reinvestigated whether CpG methylation alters the chromatin structure of reconstitutes comprising only core histones and DNA. We find that DNA methylation prevents the histone octamer from interacting with an otherwise high affinity positioning sequence in the promoter region of the chicken adult beta-globin gene. This exclusion is attributed to methylation-determined changes in DNA structure within a triplet of CpG dinucleotides. In the affected nucleosome, this sequence motif is located 1.5 helical turns from the dyad axis and is oriented towards the histone core. These findings establish that DNA methylation does have the capacity to modulate chromatin structure directly, at its most fundamental level. Furthermore, our observations strongly suggest that a very limited number of nucleotides can make a decisive contribution to the translational positioning of nucleosomes.
Similar articles
- A determining influence for CpG dinucleotides on nucleosome positioning in vitro.
Davey CS, Pennings S, Reilly C, Meehan RR, Allan J. Davey CS, et al. Nucleic Acids Res. 2004 Aug 13;32(14):4322-31. doi: 10.1093/nar/gkh749. Print 2004. Nucleic Acids Res. 2004. PMID: 15310836 Free PMC article. - CpG methylation-dependent repression of the human O6-methylguanine-DNA methyltransferase gene linked to chromatin structure alteration.
Bhakat KK, Mitra S. Bhakat KK, et al. Carcinogenesis. 2003 Aug;24(8):1337-45. doi: 10.1093/carcin/bgg086. Epub 2003 May 22. Carcinogenesis. 2003. PMID: 12807730 - In silico approaches reveal the potential for DNA sequence-dependent histone octamer affinity to influence chromatin structure in vivo.
Fraser RM, Allan J, Simmen MW. Fraser RM, et al. J Mol Biol. 2006 Dec 8;364(4):582-98. doi: 10.1016/j.jmb.2006.08.092. Epub 2006 Sep 7. J Mol Biol. 2006. PMID: 17027853 - DNA methylation and chromatin structure: the puzzling CpG islands.
Caiafa P, Zampieri M. Caiafa P, et al. J Cell Biochem. 2005 Feb 1;94(2):257-65. doi: 10.1002/jcb.20325. J Cell Biochem. 2005. PMID: 15546139 Review. - Epigenetic regulators and histone modification.
Imhof A. Imhof A. Brief Funct Genomic Proteomic. 2006 Sep;5(3):222-7. doi: 10.1093/bfgp/ell030. Epub 2006 Sep 2. Brief Funct Genomic Proteomic. 2006. PMID: 16951415 Review.
Cited by
- Genome-wide single-molecule analysis of long-read DNA methylation reveals heterogeneous patterns at heterochromatin that reflect nucleosome organisation.
Kerr L, Kafetzopoulos I, Grima R, Sproul D. Kerr L, et al. PLoS Genet. 2023 Oct 2;19(10):e1010958. doi: 10.1371/journal.pgen.1010958. eCollection 2023 Oct. PLoS Genet. 2023. PMID: 37782664 Free PMC article. - Base Dynamics in the _Hha_I Protein Binding Site.
Pederson K, Meints GA, Drobny GP. Pederson K, et al. J Phys Chem B. 2023 Aug 24;127(33):7266-7275. doi: 10.1021/acs.jpcb.3c03687. Epub 2023 Aug 10. J Phys Chem B. 2023. PMID: 37561575 Free PMC article. - Histone H1 prevents non-CG methylation-mediated small RNA biogenesis in Arabidopsis heterochromatin.
Choi J, Lyons DB, Zilberman D. Choi J, et al. Elife. 2021 Dec 1;10:e72676. doi: 10.7554/eLife.72676. Elife. 2021. PMID: 34850679 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources