Direct antidiabetic effect of leptin through triglyceride depletion of tissues - PubMed (original) (raw)
Direct antidiabetic effect of leptin through triglyceride depletion of tissues
M Shimabukuro et al. Proc Natl Acad Sci U S A. 1997.
Abstract
Leptin is currently believed to control body composition largely, if not entirely, via hypothalamic receptors that regulate food intake and thermogenesis. Here we demonstrate direct extraneural effects of leptin to deplete fat content of both adipocytes and nonadipocytes to levels far below those of pairfed controls. In cultured pancreatic islets, leptin lowered triglyceride (TG) content by preventing TG formation from free fatty acids (FFA) and by increasing FFA oxidation. In vivo hyperleptinemia, induced in normal rats by adenovirus gene transfer, depleted TG content in liver, skeletal muscle, and pancreas without increasing plasma FFA or ketones, suggesting intracellular oxidation. In islets of obese Zucker Diabetic Fatty rats with leptin receptor mutations, leptin had no effect in vivo or in vitro. The TG content was approximately 20 times normal, and esterification capacity was increased 3- to 4-fold. Thus, in rats with normal leptin receptors but not in Zucker Diabetic Fatty rats, nonadipocytes and adipocytes esterify FFA, store them as TG, and later oxidize them intracellularly via an "indirect pathway" of intracellular fatty acid metabolism controlled by leptin. By maintaining insulin sensitivity and preventing islet lipotoxicity, this activity of leptin may prevent adipogenic diabetes.
Figures
Figure 1
Effect of recombinant leptin on triglyceride content (A), oxidation (B), and esterification (C) of [3H]palmitate in islets from normal Wistar rats cultured for 3 days. Data represent the mean ± SEM for three samples. ∗, P <0.05; and ∗∗, P <0.01 vs. O leptin.
Figure 2
Effect of infusion of AdCMV–leptin on plasma FFA (A) and β-OH (B) and urinary ketones (C) of normal Wistar rats. AdCMV–β-gal-infused rats, open bars; AdCMV–leptin-induced rats, dashed bars; pairfed controls, closed bars. Blood and urine samples were collected before (0) and 3, 7, and 14 days after operations. Data represent the mean ± SEM for four to six samples.
Figure 3
Effect of infusion of AdCMV–leptin on food intake (A) and body weight (B) of normal Wistar and heterozygous (fa/+) and homozygous (fa/fa) ZDF rats. AdCMV–β-gal-infused rats, open circles; AdCMV–leptin-induced rats, closed circles; pairfed controls, open squares. Food intake and body weight changes were measured before (0) and 14 days after operations. Data represent the mean ± SEM for four to six samples.
Figure 4
(A) Genotyping of ZDF animals. Effect of recombinant leptin on triglyceride content (B), oxidation (C), and esterification (D) of [3H]-palmitate in islets from wild-type (+/+), heterozygous (fa/+), and homozygous (fa/fa) ZDF rats cultured for 3 days. Lanes in A: 1, wild-type (+/+); 2, heterozygous lean (fa/+); 3, homozygous obese fa/fa rat. A 130-bp _Msp_I fragment in lanes 2 and 3 is not shown. Data in B_–_D represent the mean ± SEM for three samples. ∗, P <0.05; and ∗∗, P <0.01 vs. O leptin.
Comment in
- Leptin expression and action: new experimental paradigms.
Flier JS. Flier JS. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4242-5. doi: 10.1073/pnas.94.9.4242. Proc Natl Acad Sci U S A. 1997. PMID: 9113973 Free PMC article. No abstract available.
Similar articles
- Liporegulation in diet-induced obesity. The antisteatotic role of hyperleptinemia.
Lee Y, Wang MY, Kakuma T, Wang ZW, Babcock E, McCorkle K, Higa M, Zhou YT, Unger RH. Lee Y, et al. J Biol Chem. 2001 Feb 23;276(8):5629-35. doi: 10.1074/jbc.M008553200. Epub 2000 Nov 28. J Biol Chem. 2001. PMID: 11096093 - Induction by leptin of uncoupling protein-2 and enzymes of fatty acid oxidation.
Zhou YT, Shimabukuro M, Koyama K, Lee Y, Wang MY, Trieu F, Newgard CB, Unger RH. Zhou YT, et al. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6386-90. doi: 10.1073/pnas.94.12.6386. Proc Natl Acad Sci U S A. 1997. PMID: 9177227 Free PMC article. - OB-Rb gene transfer to leptin-resistant islets reverses diabetogenic phenotype.
Wang MY, Koyama K, Shimabukuro M, Newgard CB, Unger RH. Wang MY, et al. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):714-8. doi: 10.1073/pnas.95.2.714. Proc Natl Acad Sci U S A. 1998. PMID: 9435258 Free PMC article. - Lipotoxic diseases of nonadipose tissues in obesity.
Unger RH, Orci L. Unger RH, et al. Int J Obes Relat Metab Disord. 2000 Nov;24 Suppl 4:S28-32. doi: 10.1038/sj.ijo.0801498. Int J Obes Relat Metab Disord. 2000. PMID: 11126236 Review. - The response of skeletal muscle to leptin.
Ceddia RB, William WN Jr, Curi R. Ceddia RB, et al. Front Biosci. 2001 Jan 1;6:D90-7. doi: 10.2741/ceddia. Front Biosci. 2001. PMID: 11145919 Review.
Cited by
- Regulation of insulin and leptin signaling by muscle suppressor of cytokine signaling 3 (SOCS3).
Yang Z, Hulver M, McMillan RP, Cai L, Kershaw EE, Yu L, Xue B, Shi H. Yang Z, et al. PLoS One. 2012;7(10):e47493. doi: 10.1371/journal.pone.0047493. Epub 2012 Oct 24. PLoS One. 2012. PMID: 23115649 Free PMC article. - Troglitazone prevents mitochondrial alterations, beta cell destruction, and diabetes in obese prediabetic rats.
Higa M, Zhou YT, Ravazzola M, Baetens D, Orci L, Unger RH. Higa M, et al. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11513-8. doi: 10.1073/pnas.96.20.11513. Proc Natl Acad Sci U S A. 1999. PMID: 10500208 Free PMC article. - Effect of exercise training on muscle glucose transporter 4 protein and intramuscular lipid content in elderly men with impaired glucose tolerance.
Kim HJ, Lee JS, Kim CK. Kim HJ, et al. Eur J Appl Physiol. 2004 Dec;93(3):353-8. doi: 10.1007/s00421-004-1214-2. Eur J Appl Physiol. 2004. PMID: 15480742 - Fatty diabetic lung: altered alveolar structure and surfactant protein expression.
Foster DJ, Ravikumar P, Bellotto DJ, Unger RH, Hsia CC. Foster DJ, et al. Am J Physiol Lung Cell Mol Physiol. 2010 Mar;298(3):L392-403. doi: 10.1152/ajplung.00041.2009. Epub 2010 Jan 8. Am J Physiol Lung Cell Mol Physiol. 2010. PMID: 20061442 Free PMC article. - Potential role of oral thiazolidinedione therapy in preserving beta-cell function in type 2 diabetes mellitus.
Walter H, Lübben G. Walter H, et al. Drugs. 2005;65(1):1-13. doi: 10.2165/00003495-200565010-00001. Drugs. 2005. PMID: 15610048 Review.
References
- Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman J M. Nature (London) 1994;372:425–431. - PubMed
- Vaisse C, Halaas J L, Horvath C M, Darnell J E, Stoffel M, Friedman J M. Nat Genet. 1996;14:95–97. - PubMed
- Tartaglia L A, Dombski M, Weng X, Deng N H, Culpepper J, Devos R, Richards G J, Campfield L A, Clark F T, Deeds J, Muir C, Sanker S, Moriarty A, Moore K J, Smutko J S, Mays G G, Woolf E A, Monroe C A, Tepper R I. Cell. 1995;83:1263–1271. - PubMed
- Wang M-Y, Zhou Y-T, Newgard C B, Unger R H. FEBS Lett. 1996;392:87–90. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous