Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density - PubMed (original) (raw)
. 1997 May 23;272(21):13467-70.
doi: 10.1074/jbc.272.21.13467.
Affiliations
- PMID: 9153188
- DOI: 10.1074/jbc.272.21.13467
Free article
Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density
S Strack et al. J Biol Chem. 1997.
Free article
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) undergoes calcium-dependent autophosphorylation, generating a calcium-independent form that may serve as a molecular substrate for memory. Here we show that calcium-independent CaMKII specifically binds to isolated postsynaptic densities (PSDs), leading to enhanced phosphorylation of many PSD proteins including the alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)-type glutamate receptor. Furthermore, binding to PSDs changes CaMKII from a substrate for protein phosphatase 2A to a protein phosphatase 1 substrate. Translocation of CaMKII to PSDs occurs in hippocampal slices following treatments that induce CaMKII autophosphorylation and a form of long term potentiation. Thus, synaptic activation leads to accumulation of autophosphorylated, activated CaMKII in the PSD. This increases substrate phosphorylation and affects regulation of the kinase by protein phosphatases, which may contribute to enhancement of synaptic strength.
Similar articles
- A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly.
Lisman JE, Zhabotinsky AM. Lisman JE, et al. Neuron. 2001 Aug 2;31(2):191-201. doi: 10.1016/s0896-6273(01)00364-6. Neuron. 2001. PMID: 11502252 Review. - CaMKII-dependent phosphorylation of NR2A and NR2B is decreased in animals characterized by hippocampal damage and impaired LTP.
Caputi A, Gardoni F, Cimino M, Pastorino L, Cattabeni F, Di Luca M. Caputi A, et al. Eur J Neurosci. 1999 Jan;11(1):141-8. doi: 10.1046/j.1460-9568.1999.00414.x. Eur J Neurosci. 1999. PMID: 9987018 - Differential inactivation of postsynaptic density-associated and soluble Ca2+/calmodulin-dependent protein kinase II by protein phosphatases 1 and 2A.
Strack S, Barban MA, Wadzinski BE, Colbran RJ. Strack S, et al. J Neurochem. 1997 May;68(5):2119-28. doi: 10.1046/j.1471-4159.1997.68052119.x. J Neurochem. 1997. PMID: 9109540 - CaM kinase II in long-term potentiation.
Fukunaga K, Muller D, Miyamoto E. Fukunaga K, et al. Neurochem Int. 1996 Apr;28(4):343-58. doi: 10.1016/0197-0186(95)00097-6. Neurochem Int. 1996. PMID: 8740440 Review.
Cited by
- Binary-FRET reveals transient excited-state structure associated with activity-dependent CaMKII - NR2B binding and adaptation.
Nguyen TA, Puhl HL 3rd, Hines K, Liput DJ, Vogel SS. Nguyen TA, et al. Nat Commun. 2022 Oct 25;13(1):6335. doi: 10.1038/s41467-022-33795-8. Nat Commun. 2022. PMID: 36284097 Free PMC article. - Differential roles of Ca(2+)/calmodulin-dependent protein kinase II and mitogen-activated protein kinase activation in hippocampal long-term potentiation.
Liu J, Fukunaga K, Yamamoto H, Nishi K, Miyamoto E. Liu J, et al. J Neurosci. 1999 Oct 1;19(19):8292-9. doi: 10.1523/JNEUROSCI.19-19-08292.1999. J Neurosci. 1999. PMID: 10493730 Free PMC article. - Protein phosphatases and calcium/calmodulin-dependent protein kinase II-dependent synaptic plasticity.
Colbran RJ. Colbran RJ. J Neurosci. 2004 Sep 29;24(39):8404-9. doi: 10.1523/JNEUROSCI.3602-04.2004. J Neurosci. 2004. PMID: 15456812 Free PMC article. Review. No abstract available. - Role of the neurogranin concentrated in spines in the induction of long-term potentiation.
Zhabotinsky AM, Camp RN, Epstein IR, Lisman JE. Zhabotinsky AM, et al. J Neurosci. 2006 Jul 12;26(28):7337-47. doi: 10.1523/JNEUROSCI.0729-06.2006. J Neurosci. 2006. PMID: 16837580 Free PMC article. - A diffusion-activation model of CaMKII translocation waves in dendrites.
Earnshaw BA, Bressloff PC. Earnshaw BA, et al. J Comput Neurosci. 2010 Feb;28(1):77-89. doi: 10.1007/s10827-009-0188-9. Epub 2009 Nov 5. J Comput Neurosci. 2010. PMID: 19890704