Raf-1 kinase and exoenzyme S interact with 14-3-3zeta through a common site involving lysine 49 - PubMed (original) (raw)
. 1997 May 23;272(21):13717-24.
doi: 10.1074/jbc.272.21.13717.
Affiliations
- PMID: 9153224
- DOI: 10.1074/jbc.272.21.13717
Free article
Raf-1 kinase and exoenzyme S interact with 14-3-3zeta through a common site involving lysine 49
L Zhang et al. J Biol Chem. 1997.
Free article
Abstract
14-3-3 proteins are a family of conserved dimeric molecules that bind to a range of cellular proteins involved in signal transduction and oncogenesis. Our solution of the crystal structure of 14-3-3zeta revealed a conserved amphipathic groove that may allow the association of 14-3-3 with diverse ligands (Liu, D., Bienkowska, J., Petosa, C., Collier, R. J., Fu, H., and Liddington, R. (1995) Nature 376, 191-194). Here, the contributions of three positively charged residues (Lys-49, Arg-56, and Arg-60) that lie in this Raf-binding groove were investigated. Two of the charge-reversal mutations greatly (K49E) or partially (R56E) decreased the interaction of 14-3-3zeta with Raf-1 kinase, whereas R60E showed only subtle effects on the binding. Interestingly, these mutations exhibited similar effects on the functional interaction of 14-3-3zeta with another target protein, exoenzyme S (ExoS), an ADP-ribosyltransferase from Pseudomonas aeruginosa. The EC50 values of 14-3-3zeta required for ExoS activation increased by approximately 110-, 5-, and 2-fold for the K49E, R56E, and R60E mutants, respectively. The drastic reduction of 14-3-3zeta/ligand affinity by the K49E mutation is due to a local electrostatic effect, rather than the result of a gross structural alteration, as evidenced by partial proteolysis and circular dichroism analysis. This work identifies the first point mutation (K49E) that dramatically disrupts 14-3-3zeta/ligand interactions. The parallel effects of this single point mutation on both Raf-1 binding and ExoS activation strongly suggest that diverse associated proteins share a common structural binding determinant on 14-3-3zeta.
Similar articles
- Mutations in the hydrophobic surface of an amphipathic groove of 14-3-3zeta disrupt its interaction with Raf-1 kinase.
Wang H, Zhang L, Liddington R, Fu H. Wang H, et al. J Biol Chem. 1998 Jun 26;273(26):16297-304. doi: 10.1074/jbc.273.26.16297. J Biol Chem. 1998. PMID: 9632690 - 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove.
Petosa C, Masters SC, Bankston LA, Pohl J, Wang B, Fu H, Liddington RC. Petosa C, et al. J Biol Chem. 1998 Jun 26;273(26):16305-10. doi: 10.1074/jbc.273.26.16305. J Biol Chem. 1998. PMID: 9632691 - Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S of Pseudomonas aeruginosa.
Masters SC, Pederson KJ, Zhang L, Barbieri JT, Fu H. Masters SC, et al. Biochemistry. 1999 Apr 20;38(16):5216-21. doi: 10.1021/bi982492m. Biochemistry. 1999. PMID: 10213629 - Exoenzyme S binds its cofactor 14-3-3 through a non-phosphorylated motif.
Hallberg B. Hallberg B. Biochem Soc Trans. 2002 Aug;30(4):401-5. doi: 10.1042/bst0300401. Biochem Soc Trans. 2002. PMID: 12196103 Review. - Protein-protein interactions. Putting the pieces together.
Bax B, Jhoti H. Bax B, et al. Curr Biol. 1995 Oct 1;5(10):1119-21. doi: 10.1016/s0960-9822(95)00226-0. Curr Biol. 1995. PMID: 8548282 Review.
Cited by
- 14-3-3 proteins and plant development.
Fulgosi H, Soll J, de Faria Maraschin S, Korthout HA, Wang M, Testerink C. Fulgosi H, et al. Plant Mol Biol. 2002 Dec;50(6):1019-29. doi: 10.1023/a:1021295604109. Plant Mol Biol. 2002. PMID: 12516869 - 14-3-3 proteins are required for maintenance of Raf-1 phosphorylation and kinase activity.
Thorson JA, Yu LW, Hsu AL, Shih NY, Graves PR, Tanner JW, Allen PM, Piwnica-Worms H, Shaw AS. Thorson JA, et al. Mol Cell Biol. 1998 Sep;18(9):5229-38. doi: 10.1128/MCB.18.9.5229. Mol Cell Biol. 1998. PMID: 9710607 Free PMC article. - Overexpressed alpha-synuclein regulated the nuclear factor-kappaB signal pathway.
Yuan Y, Jin J, Yang B, Zhang W, Hu J, Zhang Y, Chen NH. Yuan Y, et al. Cell Mol Neurobiol. 2008 Jan;28(1):21-33. doi: 10.1007/s10571-007-9185-6. Epub 2007 Aug 22. Cell Mol Neurobiol. 2008. PMID: 17712623 Free PMC article. - 14-3-3 checkpoint regulatory proteins interact specifically with DNA repair protein human exonuclease 1 (hEXO1) via a semi-conserved motif.
Andersen SD, Keijzers G, Rampakakis E, Engels K, Luhn P, El-Shemerly M, Nielsen FC, Du Y, May A, Bohr VA, Ferrari S, Zannis-Hadjopoulos M, Fu H, Rasmussen LJ. Andersen SD, et al. DNA Repair (Amst). 2012 Mar 1;11(3):267-77. doi: 10.1016/j.dnarep.2011.11.007. Epub 2012 Jan 4. DNA Repair (Amst). 2012. PMID: 22222486 Free PMC article. - 14-3-3 proteins: eukaryotic regulatory proteins with many functions.
Finnie C, Borch J, Collinge DB. Finnie C, et al. Plant Mol Biol. 1999 Jul;40(4):545-54. doi: 10.1023/a:1006211014713. Plant Mol Biol. 1999. PMID: 10480379 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous