The staining pattern of collagen fibrils. Improved correlation with sequence data - PubMed (original) (raw)
. 1979 Nov 10;254(21):10710-4.
- PMID: 91606
Free article
The staining pattern of collagen fibrils. Improved correlation with sequence data
K M Meek et al. J Biol Chem. 1979.
Free article
Abstract
The periodic banding pattern of stained collagen fibrils observed in the electron microscopic can be correlated with the charge distribution deduced from the amino acid sequence. Earlier work used alpha 1 chain sequence data only. The present study incorporates alpha 2 as well as alpha 1 sequence data, so that the complete distribution of charged residues is used. Correlation is improved if it is supposed that the extrahelical terminal regions are contracted. The optimal value of the periodicity, D, (previously 232.3 +/- 0.5 residues using alpha 1 data only), is now 234.2 +/- 0.5 residues, assuming uniform spacing of residues in the helical body of the molecule. This value agrees better with values obtained by others from analyses of interactions between molecules, using sequence data alone. Using the improved value of D, the relative axial locations of the charged residues in the fibril are displayed. In this way, the charged residues contributing to each band in the fibril staining pattern can be identified.
Similar articles
- Collagen fibril formation.
Kadler KE, Holmes DF, Trotter JA, Chapman JA. Kadler KE, et al. Biochem J. 1996 May 15;316 ( Pt 1)(Pt 1):1-11. doi: 10.1042/bj3160001. Biochem J. 1996. PMID: 8645190 Free PMC article. Review. - A model for type II collagen fibrils: distinctive D-band patterns in native and reconstituted fibrils compared with sequence data for helix and telopeptide domains.
Ortolani F, Giordano M, Marchini M. Ortolani F, et al. Biopolymers. 2000 Nov;54(6):448-63. doi: 10.1002/1097-0282(200011)54:6<448::AID-BIP80>3.0.CO;2-Q. Biopolymers. 2000. PMID: 10951330 - The self-assembly of a mini-fibril with axial periodicity from a designed collagen-mimetic triple helix.
Kaur PJ, Strawn R, Bai H, Xu K, Ordas G, Matsui H, Xu Y. Kaur PJ, et al. J Biol Chem. 2015 Apr 3;290(14):9251-61. doi: 10.1074/jbc.M113.542241. Epub 2015 Feb 11. J Biol Chem. 2015. PMID: 25673694 Free PMC article. - The collagen fibril--a model system for studying the staining and fixation of a protein.
Chapman JA, Tzaphlidou M, Meek KM, Kadler KE. Chapman JA, et al. Electron Microsc Rev. 1990;3(1):143-82. doi: 10.1016/0892-0354(90)90018-n. Electron Microsc Rev. 1990. PMID: 1715773 Review.
Cited by
- Collagen fibril formation.
Kadler KE, Holmes DF, Trotter JA, Chapman JA. Kadler KE, et al. Biochem J. 1996 May 15;316 ( Pt 1)(Pt 1):1-11. doi: 10.1042/bj3160001. Biochem J. 1996. PMID: 8645190 Free PMC article. Review. - The Mineral-Collagen Interface in Bone.
Stock SR. Stock SR. Calcif Tissue Int. 2015 Sep;97(3):262-80. doi: 10.1007/s00223-015-9984-6. Epub 2015 Apr 1. Calcif Tissue Int. 2015. PMID: 25824581 Free PMC article. Review. - A correlation between the distribution of biological apatite and amino acid sequence of type I collagen.
Maitland ME, Arsenault AL. Maitland ME, et al. Calcif Tissue Int. 1991 May;48(5):341-52. doi: 10.1007/BF02556154. Calcif Tissue Int. 1991. PMID: 2054719 - Cross-linked matrix rigidity and soluble retinoids synergize in nuclear lamina regulation of stem cell differentiation.
Ivanovska IL, Swift J, Spinler K, Dingal D, Cho S, Discher DE. Ivanovska IL, et al. Mol Biol Cell. 2017 Jul 7;28(14):2010-2022. doi: 10.1091/mbc.E17-01-0010. Epub 2017 May 31. Mol Biol Cell. 2017. PMID: 28566555 Free PMC article. - Dynamic shear-influenced collagen self-assembly.
Saeidi N, Sander EA, Ruberti JW. Saeidi N, et al. Biomaterials. 2009 Dec;30(34):6581-92. doi: 10.1016/j.biomaterials.2009.07.070. Epub 2009 Sep 17. Biomaterials. 2009. PMID: 19765820 Free PMC article.