Posttraining intraamygdala infusions of oxotremorine and propranolol modulate storage of memory for reductions in reward magnitude - PubMed (original) (raw)

Posttraining intraamygdala infusions of oxotremorine and propranolol modulate storage of memory for reductions in reward magnitude

J A Salinas et al. Neurobiol Learn Mem. 1997 Jul.

Abstract

These experiments examined the effects of posttraining intraamygdala administration of the muscarinic agonist, oxotremorine, and the beta-noradrenergic antagonist, propranolol, on memory for reduction in reward magnitude. Male Sprague-Dawley rats (175-200 g) implanted with bilateral intraamygdala cannulae were food deprived (maintained at 80% of body weight) and trained to run a straight alley (six trials/day) for either ten 45-mg food pellets (high reward) or one 45-mg food pellet (low reward) for 10 days. In Experiment One, the animals in the high-reward group were than shifted to a one-pellet reward and immediately given intraamygdala infusions (0.5 microliter/side) of either oxotremorine (10 ng) or phosphate buffer. Shifted training continued for 4 more days and no further injections were given. Shifted animals given the buffer solution displayed an increase in runway latencies but returned to preshift latencies by the fifth day of shifted training. In contrast, animals given oxotremorine exhibited increased latencies through the fifth day. In Experiment Two, rats were trained as in Experiment. One but immediately following the shift received intraamygdala infusions of oxotremorine (10 ng), propranolol (0.3 microgram), both, or phosphate buffer. Shifted vehicle-injected rats returned to preshift performance by the fifth day of shifted training. Shifted propranolol rats returned to preshift latencies by the third day of shifted training. In contrast, the shifted oxotremorine and the shifted oxotremorine/propranolol rats displayed longer latencies than unshifted controls through 5 days of shifted training. The findings indicate that the muscarinic cholinergic and beta-noradrenergic systems within the amygdala interact in regulating memory and support the view that noradrenergic influences are mediated through cholinergic activation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources