Creep rupture of wallaby tail tendons - PubMed (original) (raw)
. 1995 Mar;198(Pt 3):831-45.
doi: 10.1242/jeb.198.3.831.
Affiliations
- PMID: 9244804
- DOI: 10.1242/jeb.198.3.831
Creep rupture of wallaby tail tendons
X T Wang et al. J Exp Biol. 1995 Mar.
Abstract
The tail tendons from wallabies (Macropus rufogriseus) suffer creep rupture at stresses of 10 MPa or above, whereas their yield stress in a dynamic test is about 144 MPa. At stresses between 20 and 80 MPa, the time-to-rupture decreases exponentially with stress, but at 10 MPa, the lifetime is well above this exponential. For comparison, the stress on a wallaby tail tendon, when its muscle contracts isometrically, is about 13.5 MPa. Creep lifetime depends sharply on temperature and on specimen length, in contrast to strength and stiffness as observed in dynamic tests. The creep curve (strain versus time) can be considered as a combination of primary creep (decelerating strain) and tertiary creep (accelerating strain). Primary creep is non-damaging, but tertiary creep is accompanied by accumulating damage, with loss of stiffness and strength. 'Damage' is quantitatively defined as the fractional loss of stiffness. A creep theory is developed in which the whole of tertiary creep and, in particular, the creep lifetime are predicted from measurements made at the onset of creep, when the tendon is undamaged. This theory is based on a 'damage hypothesis', which can be stated as: damaged material no longer contributes to stiffness and strength, whereas intact material makes its full contribution to both.
Similar articles
- Fatigue rupture of wallaby tail tendons.
Wang XT, Ker RF, Alexander RM. Wang XT, et al. J Exp Biol. 1995 Mar;198(Pt 3):847-52. doi: 10.1242/jeb.198.3.847. J Exp Biol. 1995. PMID: 9244805 - Effects of creep and cyclic loading on the mechanical properties and failure of human Achilles tendons.
Wren TA, Lindsey DP, Beaupré GS, Carter DR. Wren TA, et al. Ann Biomed Eng. 2003 Jun;31(6):710-7. doi: 10.1114/1.1569267. Ann Biomed Eng. 2003. PMID: 12797621 - New aspects of the etiology of tendon rupture. An analysis of time-resolved dynamic-mechanical measurements using synchrotron radiation.
Knörzer E, Folkhard W, Geercken W, Boschert C, Koch MH, Hilbert B, Krahl H, Mosler E, Nemetschek-Gansler H, Nemetschek T. Knörzer E, et al. Arch Orthop Trauma Surg (1978). 1986;105(2):113-20. doi: 10.1007/BF00455845. Arch Orthop Trauma Surg (1978). 1986. PMID: 3718188 - Relationship between tendon stiffness and failure: a metaanalysis.
LaCroix AS, Duenwald-Kuehl SE, Lakes RS, Vanderby R Jr. LaCroix AS, et al. J Appl Physiol (1985). 2013 Jul 1;115(1):43-51. doi: 10.1152/japplphysiol.01449.2012. Epub 2013 Apr 18. J Appl Physiol (1985). 2013. PMID: 23599401 Free PMC article. Review. - Biomechanics and pathophysiology of overuse tendon injuries: ideas on insertional tendinopathy.
Maganaris CN, Narici MV, Almekinders LC, Maffulli N. Maganaris CN, et al. Sports Med. 2004;34(14):1005-17. doi: 10.2165/00007256-200434140-00005. Sports Med. 2004. PMID: 15571430 Review.
Cited by
- Functional Morphology of the Arm Spine Joint and Adjacent Structures of the Brittlestar Ophiocomina nigra (Echinodermata: Ophiuroidea).
Wilkie IC. Wilkie IC. PLoS One. 2016 Dec 14;11(12):e0167533. doi: 10.1371/journal.pone.0167533. eCollection 2016. PLoS One. 2016. PMID: 27974856 Free PMC article. - Fatigue damage of collagenous tissues: experiment, modeling and simulation studies.
Martin C, Sun W. Martin C, et al. J Long Term Eff Med Implants. 2015;25(1-2):55-73. doi: 10.1615/jlongtermeffmedimplants.2015011749. J Long Term Eff Med Implants. 2015. PMID: 25955007 Free PMC article. Review. - Mechanical properties of the compass depressors of the sea-urchin Paracentrotus lividus (Echinodermata, Echinoidea) and the effects of enzymes, neurotransmitters and synthetic tensilin-like protein.
Wilkie IC, Fassini D, Cullorà E, Barbaglio A, Tricarico S, Sugni M, Del Giacco L, Candia Carnevali MD. Wilkie IC, et al. PLoS One. 2015 Mar 18;10(3):e0120339. doi: 10.1371/journal.pone.0120339. eCollection 2015. PLoS One. 2015. PMID: 25786033 Free PMC article. - Hind limb scaling of kangaroos and wallabies (superfamily Macropodoidea): implications for hopping performance, safety factor and elastic savings.
McGowan CP, Skinner J, Biewener AA. McGowan CP, et al. J Anat. 2008 Feb;212(2):153-63. doi: 10.1111/j.1469-7580.2007.00841.x. Epub 2007 Dec 13. J Anat. 2008. PMID: 18086129 Free PMC article. - Viscoelastic properties of isolated collagen fibrils.
Shen ZL, Kahn H, Ballarini R, Eppell SJ. Shen ZL, et al. Biophys J. 2011 Jun 22;100(12):3008-15. doi: 10.1016/j.bpj.2011.04.052. Biophys J. 2011. PMID: 21689535 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources