Mutation accumulation in nuclear, organelle, and prokaryotic transfer RNA genes - PubMed (original) (raw)
Mutation accumulation in nuclear, organelle, and prokaryotic transfer RNA genes
M Lynch. Mol Biol Evol. 1997 Sep.
Abstract
A comparative analysis of the transfer RNA genes in the genomes of the major kingdoms of eukaryotes and prokaryotes leads to the general conclusion that the rate of evolution of organelle tRNA genes is typically equal to of greater than that of their nuclear counterparts. Situations where this is not the case, most notably in vascular plants, are attributable to an elevated mutation rate in the nuclear genome. Through a comparison of rates of mutation with rates of nucleotide substitution, it is shown that there is a reduction in the efficiency of selection on new mutations in organelle genes. Numerous lines of evidence, including observed reductions in stem duplex stability and changes in loop sizes, suggest that the excess changes observed in the organelle genes are mildly deleterious. Uniparental inheritance of organelles causes a reduction in the efficiency of selection through the joint effects of an increase in linkage disequilibrium and a decrease in effective population size. These results provide molecular support for the idea that asexually propagating genomes are subject to long-term, gradual fitness loss and raise questions about the role of organelle mutations in the long-term survival of major phylogenetic lineages.
Similar articles
- Mutation accumulation in transfer RNAs: molecular evidence for Muller's ratchet in mitochondrial genomes.
Lynch M. Lynch M. Mol Biol Evol. 1996 Jan;13(1):209-20. doi: 10.1093/oxfordjournals.molbev.a025557. Mol Biol Evol. 1996. PMID: 8583893 - The discriminatory transfer routes of tRNA genes among organellar and nuclear genomes in flowering plants: a genome-wide investigation of indica rice.
Tian X, Zheng J, Hu S, Yu J. Tian X, et al. J Mol Evol. 2007 Mar;64(3):299-307. doi: 10.1007/s00239-005-0200-6. Epub 2007 Feb 1. J Mol Evol. 2007. PMID: 17273918 - Deleterious mutation accumulation in organelle genomes.
Lynch M, Blanchard JL. Lynch M, et al. Genetica. 1998;102-103(1-6):29-39. Genetica. 1998. PMID: 9720269 - Mutation pressure and the evolution of organelle genomic architecture.
Lynch M, Koskella B, Schaack S. Lynch M, et al. Science. 2006 Mar 24;311(5768):1727-30. doi: 10.1126/science.1118884. Science. 2006. PMID: 16556832 Review. - Evolution of mitochondrial gene content: gene loss and transfer to the nucleus.
Adams KL, Palmer JD. Adams KL, et al. Mol Phylogenet Evol. 2003 Dec;29(3):380-95. doi: 10.1016/s1055-7903(03)00194-5. Mol Phylogenet Evol. 2003. PMID: 14615181 Review.
Cited by
- Strong purifying selection in endogenous retroviruses in the saltwater crocodile (Crocodylus porosus) in the Northern Territory of Australia.
Chong AY, Atkinson SJ, Isberg S, Gongora J. Chong AY, et al. Mob DNA. 2012 Dec 5;3(1):20. doi: 10.1186/1759-8753-3-20. Mob DNA. 2012. PMID: 23217152 Free PMC article. - Population Genetics of Paramecium Mitochondrial Genomes: Recombination, Mutation Spectrum, and Efficacy of Selection.
Johri P, Marinov GK, Doak TG, Lynch M. Johri P, et al. Genome Biol Evol. 2019 May 1;11(5):1398-1416. doi: 10.1093/gbe/evz081. Genome Biol Evol. 2019. PMID: 30980669 Free PMC article. - The complete mitochondrial genome of the sexual oribatid mite Steganacarus magnus: genome rearrangements and loss of tRNAs.
Domes K, Maraun M, Scheu S, Cameron SL. Domes K, et al. BMC Genomics. 2008 Nov 7;9:532. doi: 10.1186/1471-2164-9-532. BMC Genomics. 2008. PMID: 18992147 Free PMC article. - Structural basis for shape-selective recognition and aminoacylation of a D-armless human mitochondrial tRNA.
Kuhle B, Hirschi M, Doerfel LK, Lander GC, Schimmel P. Kuhle B, et al. Nat Commun. 2022 Aug 30;13(1):5100. doi: 10.1038/s41467-022-32544-1. Nat Commun. 2022. PMID: 36042193 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources