ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation - PubMed (original) (raw)
ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation
K Kimura et al. Cell. 1997.
Free article
Abstract
13S condensin is a five-subunit protein complex that plays a central role in mitotic chromosome condensation in Xenopus egg extracts. Two core subunits of this complex, XCAP-C and XCAP-E, belong to an emerging family of putative ATPases, the SMC family. We report here that 13S condensin has a DNA-stimulated ATPase activity and exhibits a high affinity for structured DNAs such as cruciform DNA. 13S condensin is able to introduce positive supercoils into a closed circular DNA in the presence of bacterial or eukaryotic topoisomerase I. The supercoiling reaction is ATP-dependent. We propose that 13S condensin wraps DNA in a right-handed direction by utilizing the energy of ATP hydrolysis. This reaction may represent a key mechanism underlying the compaction of chromatin fibers during mitosis.
Similar articles
- 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation.
Kimura K, Rybenkov VV, Crisona NJ, Hirano T, Cozzarelli NR. Kimura K, et al. Cell. 1999 Jul 23;98(2):239-48. doi: 10.1016/s0092-8674(00)81018-1. Cell. 1999. PMID: 10428035 - Chromosome condensation by a human condensin complex in Xenopus egg extracts.
Kimura K, Cuvier O, Hirano T. Kimura K, et al. J Biol Chem. 2001 Feb 23;276(8):5417-20. doi: 10.1074/jbc.C000873200. Epub 2001 Jan 2. J Biol Chem. 2001. PMID: 11136719 - Phosphorylation and activation of 13S condensin by Cdc2 in vitro.
Kimura K, Hirano M, Kobayashi R, Hirano T. Kimura K, et al. Science. 1998 Oct 16;282(5388):487-90. doi: 10.1126/science.282.5388.487. Science. 1998. PMID: 9774278 - Deciphering condensin action during chromosome segregation.
Cuylen S, Haering CH. Cuylen S, et al. Trends Cell Biol. 2011 Sep;21(9):552-9. doi: 10.1016/j.tcb.2011.06.003. Epub 2011 Jul 15. Trends Cell Biol. 2011. PMID: 21763138 Review. - Condensin, chromatin crossbarring and chromosome condensation.
Thadani R, Uhlmann F, Heeger S. Thadani R, et al. Curr Biol. 2012 Dec 4;22(23):R1012-21. doi: 10.1016/j.cub.2012.10.023. Curr Biol. 2012. PMID: 23218009 Review.
Cited by
- Condensin II promotes the formation of chromosome territories by inducing axial compaction of polyploid interphase chromosomes.
Bauer CR, Hartl TA, Bosco G. Bauer CR, et al. PLoS Genet. 2012;8(8):e1002873. doi: 10.1371/journal.pgen.1002873. Epub 2012 Aug 30. PLoS Genet. 2012. PMID: 22956908 Free PMC article. - Condensin I binds chromatin early in prophase and displays a highly dynamic association with Drosophila mitotic chromosomes.
Oliveira RA, Heidmann S, Sunkel CE. Oliveira RA, et al. Chromosoma. 2007 Jun;116(3):259-74. doi: 10.1007/s00412-007-0097-5. Epub 2007 Feb 22. Chromosoma. 2007. PMID: 17318635 - Condensin loaded onto the replication fork barrier site in the rRNA gene repeats during S phase in a FOB1-dependent fashion to prevent contraction of a long repetitive array in Saccharomyces cerevisiae.
Johzuka K, Terasawa M, Ogawa H, Ogawa T, Horiuchi T. Johzuka K, et al. Mol Cell Biol. 2006 Mar;26(6):2226-36. doi: 10.1128/MCB.26.6.2226-2236.2006. Mol Cell Biol. 2006. PMID: 16507999 Free PMC article. - Condensin I interacts with the PARP-1-XRCC1 complex and functions in DNA single-strand break repair.
Heale JT, Ball AR Jr, Schmiesing JA, Kim JS, Kong X, Zhou S, Hudson DF, Earnshaw WC, Yokomori K. Heale JT, et al. Mol Cell. 2006 Mar 17;21(6):837-48. doi: 10.1016/j.molcel.2006.01.036. Mol Cell. 2006. PMID: 16543152 Free PMC article. - SMC proteins and chromosome mechanics: from bacteria to humans.
Hirano T. Hirano T. Philos Trans R Soc Lond B Biol Sci. 2005 Mar 29;360(1455):507-14. doi: 10.1098/rstb.2004.1606. Philos Trans R Soc Lond B Biol Sci. 2005. PMID: 15897176 Free PMC article. Review.