Nuclear matrix, dynamic histone acetylation and transcriptionally active chromatin - PubMed (original) (raw)
Review
. 1997 Aug;24(3):197-207.
doi: 10.1023/a:1006811817247.
Affiliations
- PMID: 9291093
- DOI: 10.1023/a:1006811817247
Review
Nuclear matrix, dynamic histone acetylation and transcriptionally active chromatin
J R Davie. Mol Biol Rep. 1997 Aug.
Abstract
The nuclear matrix, the RNA-protein skeleton of the nucleus, has a role in the organization and function of nuclear DNA. Nuclear processes associated with the nuclear matrix include transcription, replication and dynamic histone acetylation. Nuclear matrix proteins, which are tissue and cell type specific, are altered with transformation and state of differentiation. Transcription factors are associated with the nuclear matrix, with the spectra of nuclear matrix bound factors being cell type specific. There is compelling evidence that the transcription machinery is anchored to the nuclear matrix, and the chromatin fiber is spooled through this complex. Transcriptionally active chromatin domains are associated with dynamically acetylated histones. The energy exhaustive process of dynamic histone acetylation has several functions. Acetylation of the N-terminal tails of the core histones alters nucleosome and higher order chromatin structure, aiding transcriptional elongation and facilitating the binding of transcription factors to nucleosomes associated with regulatory DNA sequences. Histone acetylation can manipulate the interactions of regulatory proteins that bind to the N-terminal tails of the core histones. Lastly, dynamic acetylation may contribute to the transient attachment of transcriptionally active chromatin to the nuclear matrix. Reversible histone acetylation is catalyzed by histone acetyltransferase and deacetylase, enzymes associated with the nuclear matrix. The recent isolation and characterization of histone acetyltransferase and deacetylase reveals that these enzymes are related to transcriptional regulators, providing us with new insights about how these enzymes are targeted to nuclear matrix sites engaged in transcription.
Similar articles
- Multiple functions of dynamic histone acetylation.
Davie JR, Hendzel MJ. Davie JR, et al. J Cell Biochem. 1994 May;55(1):98-105. doi: 10.1002/jcb.240550112. J Cell Biochem. 1994. PMID: 8083305 Review. - Covalent modifications of histones: expression from chromatin templates.
Davie JR. Davie JR. Curr Opin Genet Dev. 1998 Apr;8(2):173-8. doi: 10.1016/s0959-437x(98)80138-x. Curr Opin Genet Dev. 1998. PMID: 9610407 Review. - Histone H1 is a specific repressor of core histone acetylation in chromatin.
Herrera JE, West KL, Schiltz RL, Nakatani Y, Bustin M. Herrera JE, et al. Mol Cell Biol. 2000 Jan;20(2):523-9. doi: 10.1128/MCB.20.2.523-529.2000. Mol Cell Biol. 2000. PMID: 10611231 Free PMC article. - Histone modifications, chromatin structure, and the nuclear matrix.
Davie JR. Davie JR. J Cell Biochem. 1996 Aug;62(2):149-57. doi: 10.1002/(sici)1097-4644(199608)62:2<149::aid-jcb2>3.0.co;2-s. J Cell Biochem. 1996. PMID: 8844394 Review. - Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression.
Ura K, Kurumizaka H, Dimitrov S, Almouzni G, Wolffe AP. Ura K, et al. EMBO J. 1997 Apr 15;16(8):2096-107. doi: 10.1093/emboj/16.8.2096. EMBO J. 1997. PMID: 9155035 Free PMC article.
Cited by
- Intranuclear targeting of AML/CBFalpha regulatory factors to nuclear matrix-associated transcriptional domains.
Zeng C, McNeil S, Pockwinse S, Nickerson J, Shopland L, Lawrence JB, Penman S, Hiebert S, Lian JB, van Wijnen AJ, Stein JL, Stein GS. Zeng C, et al. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1585-9. doi: 10.1073/pnas.95.4.1585. Proc Natl Acad Sci U S A. 1998. PMID: 9465059 Free PMC article. - The effects of histone acetylation on estrogen responsiveness in MCF-7 cells.
Ruh MF, Tian S, Cox LK, Ruh TS. Ruh MF, et al. Endocrine. 1999 Oct;11(2):157-64. doi: 10.1385/ENDO:11:2:157. Endocrine. 1999. PMID: 10709763 - The torsional state of DNA within the chromosome.
Roca J. Roca J. Chromosoma. 2011 Aug;120(4):323-34. doi: 10.1007/s00412-011-0324-y. Epub 2011 May 13. Chromosoma. 2011. PMID: 21567156 Review. - MATR3-antisense LINE1 RNA meshwork scaffolds higher-order chromatin organization.
Zhang Y, Cao X, Gao Z, Ma X, Wang Q, Xu X, Cai X, Zhang Y, Zhang Z, Wei G, Wen B. Zhang Y, et al. EMBO Rep. 2023 Aug 3;24(8):e57550. doi: 10.15252/embr.202357550. Epub 2023 Jun 29. EMBO Rep. 2023. PMID: 37381832 Free PMC article.
References
- Oncogene. 1996 May 2;12(9):1941-52 - PubMed
- J Biol Chem. 1996 Jun 28;271(26):15458-67 - PubMed
- Nucleic Acids Res. 1992 Oct 25;20(20):5305-10 - PubMed
- Cell. 1991 May 31;65(5):775-83 - PubMed
- J Biol Chem. 1996 Jun 28;271(26):15837-44 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources