Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins - PubMed (original) (raw)
. 1997 Sep 26;272(39):24224-33.
doi: 10.1074/jbc.272.39.24224.
Affiliations
- PMID: 9305875
- DOI: 10.1074/jbc.272.39.24224
Free article
Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins
K Hristova et al. J Biol Chem. 1997.
Free article
Abstract
We have examined the interactions of the six known rabbit neutrophil defensin antimicrobial peptides with large unilamellar vesicles (LUV) made from various lipid mixtures based on the lipid composition of Escherichia coli membranes. We find that the permeabilization of LUV made from E. coli whole lipid extracts differs dramatically from that of single-component LUV made from palmitoyl-oleoyl-phosphatidylglycerol (POPG). Specifically, defensins NP-1, NP-2, NP-3A, NP-3B, and a natural mixture of the six defensins cause fast nonpreferential leakage of high molecular weight dextrans as well as the low molecular weight fluorophore/quencher pair 8-aminonapthalene-1,3,6 trisulfonic acid (ANTS)/p-xylene-bis-pyridinium bromide (DPX) from E. coli whole lipid LUV through large, transient membrane lesions. In contrast, release of ANTS/DPX from POPG LUV induced by the defensins is slow and graded with preference for DPX (Hristova, K., Selsted, M. E., and White, S. H. (1996) Biochemistry 35, 11888-11894). Interestingly, defensins NP-4 and NP-5 alone do not induce leakage from E. coli whole lipid LUV, whereas only NP-4 is ineffective with POPG LUV. Examination of the sequences of the six defensins suggests that the inactivity of NP-4 and NP-5 may be due to their lower net positive charge and/or the substitution of a Thr for the Arg or Lys that follows the fourth Cys residue. We found the presence of three major lipid components of E. coli whole lipid to be essential for creation of the large lesions observed in LUV: phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. Cardiolipin appears to play a key role because no leakage can be induced when only phosphatidylglycerol and phosphatidylethanolamine are present. These results indicate the importance of membrane lipid composition in the permeabilization of cell membranes by rabbit defensins.
Similar articles
- Interactions of monomeric rabbit neutrophil defensins with bilayers: comparison with dimeric human defensin HNP-2.
Hristova K, Selsted ME, White SH. Hristova K, et al. Biochemistry. 1996 Sep 10;35(36):11888-94. doi: 10.1021/bi961100d. Biochemistry. 1996. PMID: 8794771 - Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores.
Wimley WC, Selsted ME, White SH. Wimley WC, et al. Protein Sci. 1994 Sep;3(9):1362-73. doi: 10.1002/pro.5560030902. Protein Sci. 1994. PMID: 7833799 Free PMC article. - Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids.
Ladokhin AS, Selsted ME, White SH. Ladokhin AS, et al. Biophys J. 1997 Feb;72(2 Pt 1):794-805. doi: 10.1016/s0006-3495(97)78713-7. Biophys J. 1997. PMID: 9017204 Free PMC article. - Defensins: a family of antimicrobial and cytotoxic peptides.
Kagan BL, Ganz T, Lehrer RI. Kagan BL, et al. Toxicology. 1994 Feb 28;87(1-3):131-49. doi: 10.1016/0300-483x(94)90158-9. Toxicology. 1994. PMID: 7512758 Review. - Defensins.
Ganz T, Selsted ME, Lehrer RI. Ganz T, et al. Eur J Haematol. 1990 Jan;44(1):1-8. doi: 10.1111/j.1600-0609.1990.tb00339.x. Eur J Haematol. 1990. PMID: 2407547 Review.
Cited by
- Lipid-Centric Approaches in Combating Infectious Diseases: Antibacterials, Antifungals and Antivirals with Lipid-Associated Mechanisms of Action.
Ostroumova OS, Efimova SS. Ostroumova OS, et al. Antibiotics (Basel). 2023 Dec 11;12(12):1716. doi: 10.3390/antibiotics12121716. Antibiotics (Basel). 2023. PMID: 38136750 Free PMC article. Review. - CXCL17 is a mucosal chemokine elevated in idiopathic pulmonary fibrosis that exhibits broad antimicrobial activity.
Burkhardt AM, Tai KP, Flores-Guiterrez JP, Vilches-Cisneros N, Kamdar K, Barbosa-Quintana O, Valle-Rios R, Hevezi PA, Zuñiga J, Selman M, Ouellette AJ, Zlotnik A. Burkhardt AM, et al. J Immunol. 2012 Jun 15;188(12):6399-406. doi: 10.4049/jimmunol.1102903. Epub 2012 May 18. J Immunol. 2012. PMID: 22611239 Free PMC article. - Susceptibilities of oral bacteria and yeast to mammalian cathelicidins.
Guthmiller JM, Vargas KG, Srikantha R, Schomberg LL, Weistroffer PL, McCray PB Jr, Tack BF. Guthmiller JM, et al. Antimicrob Agents Chemother. 2001 Nov;45(11):3216-9. doi: 10.1128/AAC.45.11.3216-3219.2001. Antimicrob Agents Chemother. 2001. PMID: 11600383 Free PMC article. - Synergistic Action of Antimicrobial Lung Proteins against Klebsiella pneumoniae.
Fraile-Ágreda V, Cañadas O, Weaver TE, Casals C. Fraile-Ágreda V, et al. Int J Mol Sci. 2021 Oct 15;22(20):11146. doi: 10.3390/ijms222011146. Int J Mol Sci. 2021. PMID: 34681806 Free PMC article. - A critical evaluation of random copolymer mimesis of homogeneous antimicrobial peptides.
Hu K, Schmidt NW, Zhu R, Jiang Y, Lai GH, Wei G, Palermo EF, Kuroda K, Wong GC, Yang L. Hu K, et al. Macromolecules. 2013;46(5):1908-1915. doi: 10.1021/ma302577e. Macromolecules. 2013. PMID: 23750051 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous