The tenascin gene family in axon growth and guidance - PubMed (original) (raw)
Review
. 1997 Nov;290(2):331-41.
doi: 10.1007/s004410050938.
Affiliations
- PMID: 9321695
- DOI: 10.1007/s004410050938
Review
The tenascin gene family in axon growth and guidance
A Faissner. Cell Tissue Res. 1997 Nov.
Abstract
Glial cells are thought to play an important role in the regulation of neural pattern formation, e.g. by guiding migrating neuroblasts and growth cones to their target regions. In addition to these supportive roles, astro- and oligodendroglia have also been attributed inhibitory functions. Thus, these lineages are believed to constrain the pathways of migrating neurons and growth cones. Recent studies have led to the current view that the inhibitory roles of the glia of the central nervous system (CNS) may be important for neural pattern formation. Furthermore, inhibitory effects of glia may play an essential role in the failure of CNS regeneration, e.g. in the astrocytic scar. Advances have been made in deciphering the molecular basis of glia-mediated inhibitory influences in the CNS. The present review focuses on the tenascin gene family of extracellular matrix glycoproteins. Of these, tenascin-C and -R are expressed in developing and lesioned neural tissue and embody both stimulatory and anti-adhesive or inhibitory properties for axon growth.
Similar articles
- Signaling to and from radial glia.
Campbell K. Campbell K. Glia. 2003 Jul;43(1):44-46. doi: 10.1002/glia.10247. Glia. 2003. PMID: 12761865 Review. - Tenascin glycoproteins in neural pattern formation: facets of a complex picture.
Faissner A. Faissner A. Perspect Dev Neurobiol. 1993;1(3):155-64. Perspect Dev Neurobiol. 1993. PMID: 7522115 Review. - Glia as architects of central nervous system formation and function.
Allen NJ, Lyons DA. Allen NJ, et al. Science. 2018 Oct 12;362(6411):181-185. doi: 10.1126/science.aat0473. Science. 2018. PMID: 30309945 Free PMC article. Review. - Perspectives on axonal regeneration in the mammalian CNS.
Bähr M, Bonhoeffer F. Bähr M, et al. Trends Neurosci. 1994 Nov;17(11):473-9. doi: 10.1016/0166-2236(94)90136-8. Trends Neurosci. 1994. PMID: 7531889 Review. - Neuronal-glial networks as substrate for CNS integration.
Verkhratsky A, Toescu EC. Verkhratsky A, et al. J Cell Mol Med. 2006 Oct-Dec;10(4):826-36. doi: 10.1111/j.1582-4934.2006.tb00527.x. J Cell Mol Med. 2006. PMID: 17125587 Review.
Cited by
- Integrins promote axonal regeneration after injury of the nervous system.
Nieuwenhuis B, Haenzi B, Andrews MR, Verhaagen J, Fawcett JW. Nieuwenhuis B, et al. Biol Rev Camb Philos Soc. 2018 Aug;93(3):1339-1362. doi: 10.1111/brv.12398. Epub 2018 Feb 15. Biol Rev Camb Philos Soc. 2018. PMID: 29446228 Free PMC article. Review. - Influence of the extracellular matrix on endogenous and transplanted stem cells after brain damage.
Roll L, Faissner A. Roll L, et al. Front Cell Neurosci. 2014 Aug 19;8:219. doi: 10.3389/fncel.2014.00219. eCollection 2014. Front Cell Neurosci. 2014. PMID: 25191223 Free PMC article. Review. - Regulation of the E/I-balance by the neural matrisome.
Mueller-Buehl C, Wegrzyn D, Bauch J, Faissner A. Mueller-Buehl C, et al. Front Mol Neurosci. 2023 Apr 18;16:1102334. doi: 10.3389/fnmol.2023.1102334. eCollection 2023. Front Mol Neurosci. 2023. PMID: 37143468 Free PMC article. Review. - Tenascins in Retinal and Optic Nerve Neurodegeneration.
Reinhard J, Roll L, Faissner A. Reinhard J, et al. Front Integr Neurosci. 2017 Oct 23;11:30. doi: 10.3389/fnint.2017.00030. eCollection 2017. Front Integr Neurosci. 2017. PMID: 29109681 Free PMC article. Review. - Chondroitin sulfate "wobble motifs" modulate maintenance and differentiation of neural stem cells and their progeny.
Purushothaman A, Sugahara K, Faissner A. Purushothaman A, et al. J Biol Chem. 2012 Jan 27;287(5):2935-42. doi: 10.1074/jbc.R111.298430. Epub 2011 Nov 17. J Biol Chem. 2012. PMID: 22094467 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases