Inflammatory process in murine lymphocytic choriomeningitis is maximal in H-2K or H-2D compatible interactions - PubMed (original) (raw)
. 1976 Jul;117(1):187-90.
- PMID: 932423
Inflammatory process in murine lymphocytic choriomeningitis is maximal in H-2K or H-2D compatible interactions
P C Doherty et al. J Immunol. 1976 Jul.
Abstract
Capacity to transfer adoptively fatal lymphocytic choriomeningitis (LCM) to immunosuppressed, virus-infected recipients is a property of H-2 compatible, non-Ig-bearing virus-immune lymphocytes. Severe meningitis is recognized when donor and recipient share at least one allele at either H-2K or H-2D. Presence of unshared H-2 genes is not obviously inhibitory, and identity at the immune response (Ir) region of the H-2 gene complex is neither sufficient nor necessary. The same constraint applies to cytotoxic T cell activity in vitro; lymphocytes and virus-infected targets must be compatible for a minimum of one allele mapping at H-2K or H-2D. The present findings thus support the concept that populations of T cells, which are cytotoxic in vitro, also mediate inflammatory process in vivo and are a major, if not the only, effector population in murine LCM.
Similar articles
- Role of the major histocompatibility complex in targeting effector T cells into a site of virus infection.
Doherty PC, Allan JE. Doherty PC, et al. Eur J Immunol. 1986 Oct;16(10):1237-42. doi: 10.1002/eji.1830161009. Eur J Immunol. 1986. PMID: 3490385 - Specific immune lysis of paramyxovirus-infected cells by H-2-compatible thymus-derived lymphocytes.
Doherty PC, Zinkernagel RM. Doherty PC, et al. Immunology. 1976 Jul;31(1):27-32. Immunology. 1976. PMID: 194830 Free PMC article. - Major transplantation antigens, viruses, and specificity of surveillance T cells.
Zinkernagel RM, Doherty PC. Zinkernagel RM, et al. Contemp Top Immunobiol. 1977;7:179-220. doi: 10.1007/978-1-4684-3054-7_5. Contemp Top Immunobiol. 1977. PMID: 69515 Review. No abstract available.
Cited by
- Upregulation of RANTES gene expression in neuroglia by Japanese encephalitis virus infection.
Chen CJ, Chen JH, Chen SY, Liao SL, Raung SL. Chen CJ, et al. J Virol. 2004 Nov;78(22):12107-19. doi: 10.1128/JVI.78.22.12107-12119.2004. J Virol. 2004. PMID: 15507597 Free PMC article. - Intrinsic responses to Borna disease virus infection of the central nervous system.
Morimoto K, Hooper DC, Bornhorst A, Corisdeo S, Bette M, Fu ZF, Schäfer MK, Koprowski H, Weihe E, Dietzschold B. Morimoto K, et al. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13345-50. doi: 10.1073/pnas.93.23.13345. Proc Natl Acad Sci U S A. 1996. PMID: 8917593 Free PMC article. - Differential effects of rabies and borna disease viruses on immediate-early- and late-response gene expression in brain tissues.
Fu ZF, Weihe E, Zheng YM, Schäfer MK, Sheng H, Corisdeo S, Rauscher FJ 3rd, Koprowski H, Dietzschold B. Fu ZF, et al. J Virol. 1993 Nov;67(11):6674-81. doi: 10.1128/JVI.67.11.6674-6681.1993. J Virol. 1993. PMID: 8411369 Free PMC article. - Severity of neurological signs and degree of inflammatory lesions in the brains of rats with Borna disease correlate with the induction of nitric oxide synthase.
Zheng YM, Schäfer MK, Weihe E, Sheng H, Corisdeo S, Fu ZF, Koprowski H, Dietzschold B. Zheng YM, et al. J Virol. 1993 Oct;67(10):5786-91. doi: 10.1128/JVI.67.10.5786-5791.1993. J Virol. 1993. PMID: 7690410 Free PMC article. - Some newly recognized aspects of resistance against and recovery from influenza.
Ennis A. Ennis A. Arch Virol. 1982;73(3-4):207-17. doi: 10.1007/BF01318075. Arch Virol. 1982. PMID: 6816194 Review. No abstract available.