Beta-amyloid and ionophore A23187 evoke tau hyperphosphorylation by distinct intracellular pathways: differential involvement of the calpain/protein kinase C system - PubMed (original) (raw)

Beta-amyloid and ionophore A23187 evoke tau hyperphosphorylation by distinct intracellular pathways: differential involvement of the calpain/protein kinase C system

T B Shea et al. J Neurosci Res. 1997.

Abstract

SH-SY-5Y human neuroblastoma cells were treated with 22 microM of a synthetic peptide corresponding to amino acid residues 25-35 of beta-amyloid (betaA) or 3 microM calcium ionophore A23187 in culture medium containing 1.8 mM extracellular calcium. Both agents increased tau immunoreactivity towards antibodies (PHF-1, ALZ-50) that recognize epitopes common with paired helical filaments (PHFs) and towards an antibody (5E2) that recognized a phosphate-independent tau epitope. However, only ionophore increased immunoreactivity with an additional phosphate-dependent antibody (AT-8) that recognized an epitope of tau when phosphorylated, and induced a corresponding decrease in immunoreactivity towards an additional antibody (Tau-1) that recognizes the same site when that site is not phosphorylated. Moreover, the ionophore-mediated increase in PHF-1 was blocked by EGTA, by the calpain inhibitor calpeptin and by the PKC inhibitor H7, while that evoked by betaA treatment was not inhibited by any of these treatments. Since ionophore-mediated calpain activation induces proteolytic PKC activation, we further examined the influence of PKC inhibition on betaA and ionophore-mediated PHF-1 induction. Antisense oligonucleotide-mediated downregulation of PKCepsilon in a stable transfectant SH-SY-5Y subclone diminished the ionophore-mediated, but not the betaA-mediated, increase in PHF-1 immunoreactivity. These data indicate specific differences in the intracellular cascade of events invoked by betaA and ionophore A23187. Moreover, although betaA invoked calcium influx in these cells, our findings further suggest that the induction of tau hyperphosphorylation by betaA may not be due to calcium influx.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources