Electrostatic binding of proteins to membranes. Theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles - PubMed (original) (raw)
Electrostatic binding of proteins to membranes. Theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles
N Ben-Tal et al. Biophys J. 1997 Oct.
Abstract
We previously applied the Poisson-Boltzmann equation to atomic models of phospholipid bilayers and basic peptides to calculate their electrostatic interactions from first principles (Ben-Tal, N., B. Honig, R. M. Peitzsch, G. Denisov, and S. McLaughlan. 1996. Binding of small basic peptides to membranes containing acidic lipids. Theoretical models and experimental results. Biophys. J. 71:561-575). Specifically, we calculated the molar partition coefficient, K (the reciprocal of the lipid concentration at which 1/2 the peptide is bound), of simple basic peptides (e.g., pentalysine) with phospholipid vesicles. The theoretical predictions agreed well with experimental measurements of the binding, but the agreement could have been fortuitous because the structure(s) of these flexible peptides is not known. Here we use the same theoretical approach to calculate the membrane binding of two small proteins of known structure: charybdotoxin (CTx) and iberiotoxin (IbTx); we also measure the binding of these proteins to phospholipid vesicles. The theoretical model describes accurately the dependence of K on the ionic strength and mol % acidic lipid in the membrane for both CTx (net charge +4) and IbTx (net charge +2). For example, the theory correctly predicts that the value of K for the binding of CTx to a membrane containing 33% acidic lipid should decrease by a factor of 10(5) when the salt concentration increases from 10 to 200 mM. We discuss the limitations of the theoretical approach and also consider a simple extension of the theory that incorporates nonpolar interactions.
Similar articles
- Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results.
Ben-Tal N, Honig B, Peitzsch RM, Denisov G, McLaughlin S. Ben-Tal N, et al. Biophys J. 1996 Aug;71(2):561-75. doi: 10.1016/S0006-3495(96)79280-9. Biophys J. 1996. PMID: 8842196 Free PMC article. - Electrostatics and the membrane association of Src: theory and experiment.
Murray D, Hermida-Matsumoto L, Buser CA, Tsang J, Sigal CT, Ben-Tal N, Honig B, Resh MD, McLaughlin S. Murray D, et al. Biochemistry. 1998 Feb 24;37(8):2145-59. doi: 10.1021/bi972012b. Biochemistry. 1998. PMID: 9485361 - Continuum molecular electrostatics, salt effects, and counterion binding--a review of the Poisson-Boltzmann theory and its modifications.
Grochowski P, Trylska J. Grochowski P, et al. Biopolymers. 2008 Feb;89(2):93-113. doi: 10.1002/bip.20877. Biopolymers. 2008. PMID: 17969016 Review. - Does the binding of clusters of basic residues to acidic lipids induce domain formation in membranes?
Buser CA, Kim J, McLaughlin S, Peitzsch RM. Buser CA, et al. Mol Membr Biol. 1995 Jan-Mar;12(1):69-75. doi: 10.3109/09687689509038498. Mol Membr Biol. 1995. PMID: 7767386 Review.
Cited by
- Effect of phosphatidylserine on unitary conductance and Ba2+ block of the BK Ca2+-activated K+ channel: re-examination of the surface charge hypothesis.
Park JB, Kim HJ, Ryu PD, Moczydlowski E. Park JB, et al. J Gen Physiol. 2003 May;121(5):375-97. doi: 10.1085/jgp.200208746. Epub 2003 Apr 14. J Gen Physiol. 2003. PMID: 12695485 Free PMC article. - Segregation of photosystems in thylakoid membranes as a critical phenomenon.
Rojdestvenski I, Ivanov AG, Cottam MG, Borodich A, Huner NP, Oquist G. Rojdestvenski I, et al. Biophys J. 2002 Apr;82(4):1719-30. doi: 10.1016/S0006-3495(02)75524-0. Biophys J. 2002. PMID: 11916833 Free PMC article. - EGFR juxtamembrane domain, membranes, and calmodulin: kinetics of their interaction.
Sengupta P, Bosis E, Nachliel E, Gutman M, Smith SO, Mihályné G, Zaitseva I, McLaughlin S. Sengupta P, et al. Biophys J. 2009 Jun 17;96(12):4887-95. doi: 10.1016/j.bpj.2009.03.027. Biophys J. 2009. PMID: 19527647 Free PMC article. - Method for measuring the unbinding energy of strongly-bound membrane-associated proteins.
Bauve E, Vernon BC, Ye D, Rogers DM, Siegrist CM, Carson BD, Rempe SB, Zheng A, Kielian M, Shreve AP, Kent MS. Bauve E, et al. Biochim Biophys Acta. 2016 Nov;1858(11):2753-2762. doi: 10.1016/j.bbamem.2016.07.004. Epub 2016 Jul 15. Biochim Biophys Acta. 2016. PMID: 27425029 Free PMC article. - Assembly and trafficking of heterotrimeric G proteins.
Marrari Y, Crouthamel M, Irannejad R, Wedegaertner PB. Marrari Y, et al. Biochemistry. 2007 Jul 3;46(26):7665-77. doi: 10.1021/bi700338m. Epub 2007 Jun 9. Biochemistry. 2007. PMID: 17559193 Free PMC article. Review.
References
- Nature. 1969 Mar 1;221(5183):844-6 - PubMed
- J Biol Chem. 1971 Apr 10;246(7):2211-7 - PubMed
- J Mol Biol. 1973 Sep 15;79(2):351-71 - PubMed
- J Mol Biol. 1976 Jul 25;105(1):1-12 - PubMed
- Biochim Biophys Acta. 1985 Aug 27;818(2):132-48 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous