Dissociation of nitric oxide from soluble guanylate cyclase - PubMed (original) (raw)
. 1997 Oct 9;239(1):284-6.
doi: 10.1006/bbrc.1997.7470.
Affiliations
- PMID: 9345311
- DOI: 10.1006/bbrc.1997.7470
Dissociation of nitric oxide from soluble guanylate cyclase
V G Kharitonov et al. Biochem Biophys Res Commun. 1997.
Abstract
Kinetic studies of soluble guanylate cyclase complexed with nitric oxide prove that NO dissociation in the presence of the substrate GTP and Mg2+ is as much as 50 times faster than in their absence. In the presence of those two reagents the dissociation rate constant is k(obs) = 0.04 +/- 0.01 s-1 at 20 degrees C, which is by far the fastest NO dissociation rate constant ever reported for a ferrous heme protein. Extrapolated to 37 degrees C, this corresponds to a half life of about 5 s for NO dissociation from soluble guanylate cyclase at physiological conditions, which is presumably fast enough to account for deactivation of the enzyme in biological systems. Dissociation rate constants are also reported for a variety of other reagent conditions.
Similar articles
- Kinetics of nitric oxide dissociation from five- and six-coordinate nitrosyl hemes and heme proteins, including soluble guanylate cyclase.
Kharitonov VG, Sharma VS, Magde D, Koesling D. Kharitonov VG, et al. Biochemistry. 1997 Jun 3;36(22):6814-8. doi: 10.1021/bi970201o. Biochemistry. 1997. PMID: 9184164 - Kinetics and equilibria of soluble guanylate cyclase ligation by CO: effect of YC-1.
Kharitonov VG, Sharma VS, Magde D, Koesling D. Kharitonov VG, et al. Biochemistry. 1999 Aug 17;38(33):10699-706. doi: 10.1021/bi990277f. Biochemistry. 1999. PMID: 10451364 - Tonic and acute nitric oxide signaling through soluble guanylate cyclase is mediated by nonheme nitric oxide, ATP, and GTP.
Cary SP, Winger JA, Marletta MA. Cary SP, et al. Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13064-9. doi: 10.1073/pnas.0506289102. Epub 2005 Aug 30. Proc Natl Acad Sci U S A. 2005. PMID: 16131543 Free PMC article. - Role of soluble guanylate cyclase in the molecular mechanism underlying the physiological effects of nitric oxide.
Severina IS. Severina IS. Biochemistry (Mosc). 1998 Jul;63(7):794-801. Biochemistry (Mosc). 1998. PMID: 9721331 Review. - [Nitric oxide. The role of guanylate cyclase in its physiological effects].
Severina IS. Severina IS. Vopr Med Khim. 2002 Jan-Feb;48(1):4-30. Vopr Med Khim. 2002. PMID: 12068497 Review. Russian.
Cited by
- NO-cGMP signaling and regenerative medicine involving stem cells.
Madhusoodanan KS, Murad F. Madhusoodanan KS, et al. Neurochem Res. 2007 Apr-May;32(4-5):681-94. doi: 10.1007/s11064-006-9167-y. Epub 2006 Oct 18. Neurochem Res. 2007. PMID: 17043768 Review. - In vivo control of soluble guanylate cyclase activation by nitric oxide: a kinetic analysis.
Condorelli P, George SC. Condorelli P, et al. Biophys J. 2001 May;80(5):2110-9. doi: 10.1016/S0006-3495(01)76184-X. Biophys J. 2001. PMID: 11325714 Free PMC article. - How do heme-protein sensors exclude oxygen? Lessons learned from cytochrome c', Nostoc puntiforme heme nitric oxide/oxygen-binding domain, and soluble guanylyl cyclase.
Tsai AL, Martin E, Berka V, Olson JS. Tsai AL, et al. Antioxid Redox Signal. 2012 Nov 1;17(9):1246-63. doi: 10.1089/ars.2012.4564. Epub 2012 Apr 10. Antioxid Redox Signal. 2012. PMID: 22356101 Free PMC article. Review. - Dynamic ligand exchange in soluble guanylyl cyclase (sGC): implications for sGC regulation and desensitization.
Tsai AL, Berka V, Sharina I, Martin E. Tsai AL, et al. J Biol Chem. 2011 Dec 16;286(50):43182-92. doi: 10.1074/jbc.M111.290304. Epub 2011 Oct 18. J Biol Chem. 2011. PMID: 22009742 Free PMC article. - Molecular regulation of tumor angiogenesis and perfusion via redox signaling.
Miller TW, Isenberg JS, Roberts DD. Miller TW, et al. Chem Rev. 2009 Jul;109(7):3099-124. doi: 10.1021/cr8005125. Chem Rev. 2009. PMID: 19374334 Free PMC article. Review. No abstract available.