Speed congenics: a classic technique in the fast lane (relatively speaking) - PubMed (original) (raw)
Review
Speed congenics: a classic technique in the fast lane (relatively speaking)
E Wakeland et al. Immunol Today. 1997 Oct.
Abstract
Marker-assisted selection protocol (MASP)-based strategies produce congenic strains with the target gene contained on clearly defined donor-derived genomic intervals in less than half the member of generations required by the classic protocol. Thus, the quality and speed of congenic strain construction are enhanced by this methodology. Here, Edward Wakeland and colleagues compare various MASP-based strategies and discuss their advantages with reference to immunological traits.
Similar articles
- Speed congenics: accelerated genome recovery using genetic markers.
Visscher PM. Visscher PM. Genet Res. 1999 Aug;74(1):81-5. doi: 10.1017/s0016672399003857. Genet Res. 1999. PMID: 10505408 - Speed congenics: applications for transgenic and knock-out mouse strains.
Wong GT. Wong GT. Neuropeptides. 2002 Apr-Jun;36(2-3):230-6. doi: 10.1054/npep.2002.0905. Neuropeptides. 2002. PMID: 12359513 Review. - A marker assisted selection protocol (MASP) to generate C57BL/6J or 129S6/SvEvTac speed congenic or consomic strains.
Estill SJ, Garcia JA. Estill SJ, et al. Genesis. 2000 Nov-Dec;28(3-4):164-6. doi: 10.1002/1526-968x(200011/12)28:3/4<164::aid-gene110>3.0.co;2-r. Genesis. 2000. PMID: 11105059 - Genome-tagged mice (GTM): two sets of genome-wide congenic strains.
Iakoubova OA, Olsson CL, Dains KM, Ross DA, Andalibi A, Lau K, Choi J, Kalcheva I, Cunanan M, Louie J, Nimon V, Machrus M, Bentley LG, Beauheim C, Silvey S, Cavalcoli J, Lusis AJ, West DB. Iakoubova OA, et al. Genomics. 2001 May 15;74(1):89-104. doi: 10.1006/geno.2000.6497. Genomics. 2001. PMID: 11374905 - Mind the gap: analysis of marker-assisted breeding strategies for inbred mouse strains.
Armstrong NJ, Brodnicki TC, Speed TP. Armstrong NJ, et al. Mamm Genome. 2006 Apr;17(4):273-87. doi: 10.1007/s00335-005-0123-y. Epub 2006 Apr 4. Mamm Genome. 2006. PMID: 16596449 Review.
Cited by
- The calcitonin receptor gene is a candidate for regulation of susceptibility to herpes simplex type 1 neuronal infection leading to encephalitis in rat.
Abdelmagid N, Bereczky-Veress B, Guerreiro-Cacais AO, Bergman P, Luhr KM, Bergström T, Sköldenberg B, Piehl F, Olsson T, Diez M. Abdelmagid N, et al. PLoS Pathog. 2012;8(6):e1002753. doi: 10.1371/journal.ppat.1002753. Epub 2012 Jun 28. PLoS Pathog. 2012. PMID: 22761571 Free PMC article. - USP22 overexpression fails to augment tumor formation in MMTV-ERBB2 mice but loss of function impacts MMTV promoter activity.
Kuang X, Salinger A, Benavides F, Muller WJ, Dent SYR, Koutelou E. Kuang X, et al. PLoS One. 2024 Jan 18;19(1):e0290837. doi: 10.1371/journal.pone.0290837. eCollection 2024. PLoS One. 2024. PMID: 38236941 Free PMC article. - B cell activating factor (BAFF) and T cells cooperate to breach B cell tolerance in lupus-prone New Zealand Black (NZB) mice.
Chang NH, Cheung YH, Loh C, Pau E, Roy V, Cai YC, Wither J. Chang NH, et al. PLoS One. 2010 Jul 21;5(7):e11691. doi: 10.1371/journal.pone.0011691. PLoS One. 2010. PMID: 20661465 Free PMC article. - Single and multiple congenic strains for hydrocephalus in the H-Tx rat.
Jones HC, Chen GF, Yehia BR, Carter BJ, Akins EJ, Wolpin LC. Jones HC, et al. Mamm Genome. 2005 Apr;16(4):251-61. doi: 10.1007/s00335-004-2390-4. Mamm Genome. 2005. PMID: 15965786 Free PMC article. - Streamlined computational pipeline for genetic background characterization of genetically engineered mice based on next generation sequencing data.
Farkas C, Fuentes-Villalobos F, Rebolledo-Jaramillo B, Benavides F, Castro AF, Pincheira R. Farkas C, et al. BMC Genomics. 2019 Feb 12;20(1):131. doi: 10.1186/s12864-019-5504-9. BMC Genomics. 2019. PMID: 30755158 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases