Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution - PubMed (original) (raw)
Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution
J H Nadeau et al. Genetics. 1997 Nov.
Abstract
Duplicated genes are an important source of new protein functions and novel developmental and physiological pathways. Whereas most models for fate of duplicated genes show that they tend to be rapidly lost, models for pathway evolution suggest that many duplicated genes rapidly acquire novel functions. Little empirical evidence is available, however, for the relative rates of gene loss vs. divergence to help resolve these contradictory expectations. Gene families resulting from genome duplications provide an opportunity to address this apparent contradiction. With genome duplication, the number of duplicated genes in a gene family is at most 2n, where n is the number of duplications. The size of each gene family, e.g., 1, 2, 3, ..., 2n, reflects the patterns of gene loss vs. functional divergence after duplication. We focused on gene families in humans and mice that arose from genome duplications in early vertebrate evolution and we analyzed the frequency distribution of gene family size, i.e., the number of families with two, three or four members. All the models that we evaluated showed that duplicated genes are almost as likely to acquire a new and essential function as to be lost through acquisition of mutations that compromise protein function. An explanation for the unexpectedly high rate of functional divergence is that duplication allows genes to accumulate more neutral than disadvantageous mutations, thereby providing more opportunities to acquire diversified functions and pathways.
Similar articles
- Evolutionary patterns of gene families generated in the early stage of vertebrates.
Wang Y, Gu X. Wang Y, et al. J Mol Evol. 2000 Jul;51(1):88-96. doi: 10.1007/s002390010069. J Mol Evol. 2000. PMID: 10903375 - The fate of duplicated genes: loss or new function?
Wagner A. Wagner A. Bioessays. 1998 Oct;20(10):785-8. doi: 10.1002/(SICI)1521-1878(199810)20:10<785::AID-BIES2>3.0.CO;2-M. Bioessays. 1998. PMID: 10200118 - Degree of Functional Divergence in Duplicates Is Associated with Distinct Roles in Plant Evolution.
Ezoe A, Shirai K, Hanada K. Ezoe A, et al. Mol Biol Evol. 2021 Apr 13;38(4):1447-1459. doi: 10.1093/molbev/msaa302. Mol Biol Evol. 2021. PMID: 33290522 Free PMC article. - Gen(om)e duplications in the evolution of early vertebrates.
Sidow A. Sidow A. Curr Opin Genet Dev. 1996 Dec;6(6):715-22. doi: 10.1016/s0959-437x(96)80026-8. Curr Opin Genet Dev. 1996. PMID: 8994842 Review. - Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates.
Cañestro C, Albalat R, Irimia M, Garcia-Fernàndez J. Cañestro C, et al. Semin Cell Dev Biol. 2013 Feb;24(2):83-94. doi: 10.1016/j.semcdb.2012.12.008. Epub 2013 Jan 3. Semin Cell Dev Biol. 2013. PMID: 23291262 Review.
Cited by
- An evolving model of undirected networks based on microscopic biological interaction systems.
Tan L, Zhang J, Jiang L. Tan L, et al. J Biol Phys. 2009 May;35(2):197-207. doi: 10.1007/s10867-009-9142-3. Epub 2009 Mar 27. J Biol Phys. 2009. PMID: 19669562 Free PMC article. - Deeply conserved chordate noncoding sequences preserve genome synteny but do not drive gene duplicate retention.
Hufton AL, Mathia S, Braun H, Georgi U, Lehrach H, Vingron M, Poustka AJ, Panopoulou G. Hufton AL, et al. Genome Res. 2009 Nov;19(11):2036-51. doi: 10.1101/gr.093237.109. Epub 2009 Aug 24. Genome Res. 2009. PMID: 19704032 Free PMC article. - Duplication and Sub/Neofunctionalization of Malvolio, an Insect Homolog of Nramp, in the Subsocial Beetle Nicrophorus vespilloides.
Mehlferber EC, Benowitz KM, Roy-Zokan EM, McKinney EC, Cunningham CB, Moore AJ. Mehlferber EC, et al. G3 (Bethesda). 2017 Oct 5;7(10):3393-3403. doi: 10.1534/g3.117.300183. G3 (Bethesda). 2017. PMID: 28830925 Free PMC article. - Functional analysis of gene duplications in Saccharomyces cerevisiae.
Guan Y, Dunham MJ, Troyanskaya OG. Guan Y, et al. Genetics. 2007 Feb;175(2):933-43. doi: 10.1534/genetics.106.064329. Epub 2006 Dec 6. Genetics. 2007. PMID: 17151249 Free PMC article. - Integrated assessment of genomic correlates of protein evolutionary rate.
Xia Y, Franzosa EA, Gerstein MB. Xia Y, et al. PLoS Comput Biol. 2009 Jun;5(6):e1000413. doi: 10.1371/journal.pcbi.1000413. Epub 2009 Jun 12. PLoS Comput Biol. 2009. PMID: 19521505 Free PMC article.
References
- Hereditas. 1968;59(1):169-87 - PubMed
- Trends Genet. 1996 Sep;12(9):364-9 - PubMed
- Proc Natl Acad Sci U S A. 1974 Jul;71(7):2848-52 - PubMed
- Annu Rev Genet. 1975;9:305-53 - PubMed
- Annu Rev Genet. 1975;9:355-85 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources