Artifactual kinds and functional design features: what a primate understands without language - PubMed (original) (raw)

Artifactual kinds and functional design features: what a primate understands without language

M D Hauser. Cognition. 1997 Sep.

Abstract

Of several domains of knowledge, humans appear to be born with an innately structured representational system for making sense of objects, what properties individuate them, how they move in space, and what causes them to move from one location to another. They also appear to make simple conceptual cuts between artifactual kinds and living kinds. The basis for this distinction seems to be a combination of crucial functional properties, together with a teleological (i.e., historical/intentional) stance, one that asks 'What was this object designed for?'. Although non-human primates also appear to have considerable understanding of objects, and often use objects as tools, it is not clear whether they draw a distinction between artifactual and living kinds, and if so, what factors guide this distinction. As a step in addressing this problem, I present experiments on a small New World monkey, the cotton-top tamarin (Saguinus oedipus oedipus), designed to reveal their understanding of the functional properties of tools using a procedure associated with minimal training. Specifically, the experiments explored whether tamarins distinguish between relevant and irrelevant properties of a tool, and further, understand that some features can be transformed with little cost to functionality. The first experiment was a means-end task and involved using a cane-like object (a tool) to access a piece of food. In this experiment, there were always two choices: either the food was immediately accessible because it was located on the inside of the cane's hook or less readily accessible because it was located on the outside of the hook. Most of the tamarins reached criterion on this task within a few sessions, consistently picking the cane with the most accessible food. Subsequent experiments (2-4) involved property changes (i.e., its color, texture, size and shape) that had either significant or relatively insignificant effects on the tool's function. In general, the tamarins appeared tolerant of all property transformations as evidenced by the fact that they selected each object at least once. However, clear preferences also emerged suggesting that some properties had a more significant impact on the tool's functionality. Thus, in head-to-head competitions, tools with color or texture changes were selectively preferred over tools with shape or size changes. This makes sense color and texture do not effect the tool's function, whereas shape and size do. The final experiments involved both novel and familiar objects that, based on their current configuration, could readily be used as tools, in contrast with objects that required considerable manipulation to convert into a tool. Consistently, the tamarins preferred possible over convertible tools, and when two convertible tools were presented at the same time, they preferred the tool that required the fewest changes to the required motor response. Results suggest that the tamarins distinguish between relevant and irrelevant properties of a tool and this distinction is based on functionality, on having good design. This ability is especially surprising given the fact that tamarins do not naturally use tools, and infrequently come into contact with artifacts. Results are discussed in light of current theories concerning the representational foundations of natural kinds, and in particular, artifactual kinds.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources