Determination of molecular parameters by fitting sedimentation data to finite-element solutions of the Lamm equation - PubMed (original) (raw)
Determination of molecular parameters by fitting sedimentation data to finite-element solutions of the Lamm equation
B Demeler et al. Biophys J. 1998 Jan.
Abstract
A method for fitting experimental sedimentation velocity data to finite-element solutions of various models based on the Lamm equation is presented. The method provides initial parameter estimates and guides the user in choosing an appropriate model for the analysis by preprocessing the data with the G(s) method by van Holde and Weischet. For a mixture of multiple solutes in a sample, the method returns the concentrations, the sedimentation (s) and diffusion coefficients (D), and thus the molecular weights (MW) for all solutes, provided the partial specific volumes (v) are known. For nonideal samples displaying concentration-dependent solution behavior, concentration dependency parameters for s(sigma) and D(delta) can be determined. The finite-element solution of the Lamm equation used for this study provides a numerical solution to the differential equation, and does not require empirically adjusted correction terms or any assumptions such as infinitely long cells. Consequently, experimental data from samples that neither clear the meniscus nor exhibit clearly defined plateau absorbances, as well as data from approach-to-equilibrium experiments, can be analyzed with this method with enhanced accuracy when compared to other available methods. The nonlinear least-squares fitting process was accomplished by the use of an adapted version of the "Doesn't Use Derivatives" nonlinear least-squares fitting routine. The effectiveness of the approach is illustrated with experimental data obtained from protein and DNA samples. Where applicable, results are compared to methods utilizing analytical solutions of approximated Lamm equations.
Similar articles
- Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling.
Schuck P. Schuck P. Biophys J. 2000 Mar;78(3):1606-19. doi: 10.1016/S0006-3495(00)76713-0. Biophys J. 2000. PMID: 10692345 Free PMC article. - An improved function for fitting sedimentation velocity data for low-molecular-weight solutes.
Philo JS. Philo JS. Biophys J. 1997 Jan;72(1):435-44. doi: 10.1016/S0006-3495(97)78684-3. Biophys J. 1997. PMID: 8994630 Free PMC article. - Identification and interpretation of complexity in sedimentation velocity boundaries.
Demeler B, Saber H, Hansen JC. Demeler B, et al. Biophys J. 1997 Jan;72(1):397-407. doi: 10.1016/S0006-3495(97)78680-6. Biophys J. 1997. PMID: 8994626 Free PMC article. - Sedimentation Velocity: A Classical Perspective.
Correia JJ, Stafford WF. Correia JJ, et al. Methods Enzymol. 2015;562:49-80. doi: 10.1016/bs.mie.2015.06.042. Epub 2015 Aug 13. Methods Enzymol. 2015. PMID: 26412647 Review. - Analytical ultracentrifugation for the study of protein association and assembly.
Howlett GJ, Minton AP, Rivas G. Howlett GJ, et al. Curr Opin Chem Biol. 2006 Oct;10(5):430-6. doi: 10.1016/j.cbpa.2006.08.017. Epub 2006 Aug 28. Curr Opin Chem Biol. 2006. PMID: 16935549 Review.
Cited by
- Solution formation of Holliday junctions in inverted-repeat DNA sequences.
Hays FA, Schirf V, Ho PS, Demeler B. Hays FA, et al. Biochemistry. 2006 Feb 28;45(8):2467-71. doi: 10.1021/bi052129x. Biochemistry. 2006. PMID: 16489738 Free PMC article. - Prediction and analysis of analytical ultracentrifugation experiments for heterogeneous macromolecules and nanoparticles based on Brownian dynamics simulation.
de la Torre JG, Cifre JGH, Peña AID. de la Torre JG, et al. Eur Biophys J. 2018 Oct;47(7):845-854. doi: 10.1007/s00249-018-1322-2. Epub 2018 Jul 20. Eur Biophys J. 2018. PMID: 30030576 Free PMC article. - Subunit organization in cytoplasmic dynein subcomplexes.
King SJ, Bonilla M, Rodgers ME, Schroer TA. King SJ, et al. Protein Sci. 2002 May;11(5):1239-50. doi: 10.1110/ps.2520102. Protein Sci. 2002. PMID: 11967380 Free PMC article. - Biophysical characterization of the influence of salt on tetrameric SecB.
Dekker C, Agianian B, Weik M, Zaccai G, Kroon J, Gros P, de Kruijff B. Dekker C, et al. Biophys J. 2001 Jul;81(1):455-62. doi: 10.1016/S0006-3495(01)75713-X. Biophys J. 2001. PMID: 11423428 Free PMC article. - Elucidating Complicated Assembling Systems in Biology Using Size-and-Shape Analysis of Sedimentation Velocity Data.
Chaton CT, Herr AB. Chaton CT, et al. Methods Enzymol. 2015;562:187-204. doi: 10.1016/bs.mie.2015.04.004. Epub 2015 Jun 19. Methods Enzymol. 2015. PMID: 26412652 Free PMC article.
References
- Proc Natl Acad Sci U S A. 1981 Nov;78(11):6739-43 - PubMed
- Biopolymers. 1975 Aug;14(8):1685-1700 - PubMed
- Biophys Chem. 1980 Apr;11(2):303-8 - PubMed
- Biopolymers. 1976 May;15(5):843-57 - PubMed
- Biophys J. 1997 Jan;72(1):428-34 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources