The proteolytic fragments of the Alzheimer's disease-associated presenilin-1 form heterodimers and occur as a 100-150-kDa molecular mass complex - PubMed (original) (raw)
Abstract
Mutations in the presenilin (PS) genes are linked to early onset familial Alzheimer's disease (FAD). PS-1 proteins are proteolytically processed by an unknown protease to two stable fragments of approximately 30 kDa (N-terminal fragment (NTF)) and approximately 20 kDa (C-terminal fragment (CTF)) (Thinakaran, G., Borchelt, D. R., Lee, M. K., Slunt, H. H., Spitzer, L., Kim, G., Ratovitsky, T., Davenport, F., Nordstedt, C., Seeger, M., Hardy, J., Levey, A. I., Gandy, S. E., Jenkins, N. A., Copeland, N. G., Price, D. L., and Sisodia, S. S. (1996) Neuron 17, 181-190). Here we show that the CTF and NTF of PS-1 bind to each other. Fractionating proteins from 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid-extracted membrane preparations by velocity sedimentation reveal a high molecular mass SDS and Triton X-100-sensitive complex of approximately 100-150 kDa. To prove if both proteolytic fragments of PS-1 are bound to the same complex, we performed co-immunoprecipitations using multiple antibodies specific to the CTF and NTF of PS-1. These experiments revealed that both fragments of PS-1 occur as a tightly bound non-covalent complex. Upon overexpression, unclipped wild type PS-1 sediments at a lower molecular weight in glycerol velocity gradients than the endogenous fragments. In contrast, the non-cleavable, FAD-associated PS-1 Deltaexon 9 sediments at a molecular weight similar to that observed for the endogenous proteolytic fragments. This result may indicate that the Deltaexon 9 mutation generates a mutant protein that exhibits biophysical properties similar to the naturally occurring PS-1 fragments. This could explain the surprising finding that the Deltaexon 9 mutation is functionally active, although it cannot be proteolytically processed (Baumeister, R., Leimer, U., Zweckbronner, I., Jakubek, C., Grünberg, J., and Haass, C. (1997) Genes & Function 1, 149-159; Levitan, D., Doyle, T., Brousseau, D., Lee, M., Thinakaran, G., Slunt, H., Sisodia, S., and Greenwald, I. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 14940-14944). Formation of a high molecular weight complex of PS-1 composed of both endogenous PS-1 fragments may also explain the recent finding that FAD-associated mutations within the N-terminal portion of PS-1 result in the hyperaccumulation not only of the NTF but also of the CTF (Lee, M. K., Borchelt, D. R., Kim, G., Thinakaran, G., Slunt, H. H., Ratovitski, T., Martin, L. J., Kittur, A., Gandy, S., Levey, A. I., Jenkins, N., Copeland, N., Price, D. L., and Sisodia, S. S. (1997) Nat. Med. 3, 756-760). Moreover, these results provide a model to understand the highly regulated expression and processing of PS proteins.
Similar articles
- Calsenilin is a substrate for caspase-3 that preferentially interacts with the familial Alzheimer's disease-associated C-terminal fragment of presenilin 2.
Choi EK, Zaidi NF, Miller JS, Crowley AC, Merriam DE, Lilliehook C, Buxbaum JD, Wasco W. Choi EK, et al. J Biol Chem. 2001 Jun 1;276(22):19197-204. doi: 10.1074/jbc.M008597200. Epub 2001 Mar 9. J Biol Chem. 2001. PMID: 11278424 - Alzheimer's disease associated presenilin-1 holoprotein and its 18-20 kDa C-terminal fragment are death substrates for proteases of the caspase family.
Grunberg J, Walter J, Loetscher H, Deuschle U, Jacobsen H, Haass C. Grunberg J, et al. Biochemistry. 1998 Feb 24;37(8):2263-70. doi: 10.1021/bi972106l. Biochemistry. 1998. PMID: 9485372 - Proteolytic processing of presenilin-1 (PS-1) is not associated with Alzheimer's disease with or without PS-1 mutations.
Okochi M, Ishii K, Usami M, Sahara N, Kametani F, Tanaka K, Fraser PE, Ikeda M, Saunders AM, Hendriks L, Shoji SI, Nee LE, Martin JJ, Van Broeckhoven C, St George-Hyslop PH, Roses AD, Mori H. Okochi M, et al. FEBS Lett. 1997 Nov 24;418(1-2):162-6. doi: 10.1016/s0014-5793(97)01378-1. FEBS Lett. 1997. PMID: 9414118 - Proteolytic processing of Alzheimer's disease associated proteins.
Haass C, Grünberg J, Capell A, Wild-Bode C, Leimer U, Walter J, Yamazaki T, Ihara I, Zweckbronner I, Jakubek C, Baumeister R. Haass C, et al. J Neural Transm Suppl. 1998;53:159-67. doi: 10.1007/978-3-7091-6467-9_14. J Neural Transm Suppl. 1998. PMID: 9700654 Review. - Relationship between presenilinase and gamma-secretase.
Xia W. Xia W. Drug News Perspect. 2003 Mar;16(2):69-74. doi: 10.1358/dnp.2003.16.2.740248. Drug News Perspect. 2003. PMID: 12792666 Review.
Cited by
- The critical role of γ-secretase and its inhibitors in cancer and cancer therapeutics.
Song C, Zhang J, Xu C, Gao M, Li N, Geng Q. Song C, et al. Int J Biol Sci. 2023 Oct 2;19(16):5089-5103. doi: 10.7150/ijbs.87334. eCollection 2023. Int J Biol Sci. 2023. PMID: 37928268 Free PMC article. Review. - The Multifaceted Role of WNT Signaling in Alzheimer's Disease Onset and Age-Related Progression.
Kostes WW, Brafman DA. Kostes WW, et al. Cells. 2023 Apr 21;12(8):1204. doi: 10.3390/cells12081204. Cells. 2023. PMID: 37190113 Free PMC article. Review. - Targeting γ-Secretase for Familial Alzheimer's Disease.
Wolfe MS. Wolfe MS. Med Chem Res. 2021 Jul;30(7):1321-1327. doi: 10.1007/s00044-021-02744-3. Epub 2021 May 27. Med Chem Res. 2021. PMID: 35295247 Free PMC article. - Probing Mechanisms and Therapeutic Potential of γ-Secretase in Alzheimer's Disease.
Wolfe MS. Wolfe MS. Molecules. 2021 Jan 13;26(2):388. doi: 10.3390/molecules26020388. Molecules. 2021. PMID: 33450968 Free PMC article. Review. - Signaling Functions of Intramembrane Aspartyl-Proteases.
Papadopoulou AA, Fluhrer R. Papadopoulou AA, et al. Front Cardiovasc Med. 2020 Dec 14;7:591787. doi: 10.3389/fcvm.2020.591787. eCollection 2020. Front Cardiovasc Med. 2020. PMID: 33381526 Free PMC article. Review.