XCoe2, a transcription factor of the Col/Olf-1/EBF family involved in the specification of primary neurons in Xenopus - PubMed (original) (raw)

XCoe2, a transcription factor of the Col/Olf-1/EBF family involved in the specification of primary neurons in Xenopus

L Dubois et al. Curr Biol. 1998.

Free article

Abstract

Background: Primary neurogenesis in Xenopus is a model for studying the control of neural cell fate decisions. The specification of primary neurons appears to be driven by transcription factors containing a basic region and a helix-loop-helix (HLH) motif: expression of Xenopus neurogenin-related-1 (X-ngnr-1) defines the three prospective domains of primary neurogenesis, and expression of XNeuroD coincides with neuronal differentiation. The transition between neuronal competence and stable commitment to a neuronal fate remains poorly characterised, however.

Results: Drosophila Collier and rodent early B-cell factor/olfactory-1 define a family of HLH transcription factors containing a previously unknown type of DNA-binding domain. We isolated an orthologous gene from Xenopus, Xcoe2, which is expressed in precursors of primary neurons. Xcoe2 is transcribed after X-ngnr-1 and before XNeuroD. Overexpression of a dominant-negative mutant of XCoe2 prevented neuronal differentiation. Conversely, overexpressed wild-type Xcoe2 could promote ectopic differentiation of neurons, in both the neural plate and the epidermis. In contrast to studies with X-ngnr-1 or XNeuroD, the supernumerary neurons induced by Xcoe2 appeared in a 'salt-and-pepper' pattern, resulting from the activation of X-Delta1 expression and feedback regulation by lateral inhibition.

Conclusions: XCoe2 may play a pivotal role in the transcriptional cascade that specifies primary neurons in Xenopus embryos: by maintaining Delta-Notch signalling, XCoe2 stabilises the higher neural potential of selected progenitor cells that express X-ngnr-1, ensuring the transition between neural competence and irreversible commitment to a neural fate; and it promotes neuronal differentiation by activating XNeuroD expression, directly or indirectly.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources