Internalization of a Bacillus anthracis protective antigen-c-Myc fusion protein mediated by cell surface anti-c-Myc antibodies - PubMed (original) (raw)
Internalization of a Bacillus anthracis protective antigen-c-Myc fusion protein mediated by cell surface anti-c-Myc antibodies
M Varughese et al. Mol Med. 1998 Feb.
Abstract
Background: Anthrax toxin, secreted by Bacillus anthracis, consists of protective antigen (PA) and either lethal factor (LF) or edema factor (EF). PA, the receptor-binding component of the toxin, translocates LF or EF into the cytosol, where the latter proteins exert their toxic effects. We hypothesized that anthrax toxin fusion proteins could be used to kill virus-infected cells and tumor cells, if PA could be redirected to unique receptors found only on these cells.
Materials and methods: To test this hypothesis in a model system, amino acids 410-419 of the human p62(c-myc) epitope were fused to the C-terminus of PA to redirect PA to the c-Myc-specific hybridoma cell line 9E10.
Results: The PA-c-Myc fusion protein killed both mouse macrophages and 9E10 hybridoma cells when administered with LF or an LF fusion protein (FP59), respectively. Similar results were obtained with PA, which suggests that PA-c-Myc used the endogenous PA receptor to enter the cells. By blocking the endogenous PA receptors on 9E10 cells with the competitive inhibitor PA SNKEDeltaFF, the PA-c-Myc was directed to an alternate receptor, i.e., the anti-c-Myc antibodies presented on the cell surface. The c-Myc IgG were proven to act as receptors because the addition of a synthetic peptide containing the c-Myc epitope along with PA SNKEDeltaFF further reduced the toxicity of PA-c-Myc + FP59.
Conclusion: This study shows that PA can be redirected to alternate receptors by adding novel epitopes to the C-terminus of PA, enabling the creation of cell-directed toxins for therapeutic purposes.
Similar articles
- Generation of a novel chimeric PALFn antigen of Bacillus anthracis and its immunological characterization in mouse model.
Suryanarayana N, Verma M, Thavachelvam K, Saxena N, Mankere B, Tuteja U, Hmuaka V. Suryanarayana N, et al. Appl Microbiol Biotechnol. 2016 Oct;100(19):8439-51. doi: 10.1007/s00253-016-7684-4. Epub 2016 Jun 30. Appl Microbiol Biotechnol. 2016. PMID: 27364624 - Human monoclonal antibodies against anthrax lethal factor and protective antigen act independently to protect against Bacillus anthracis infection and enhance endogenous immunity to anthrax.
Albrecht MT, Li H, Williamson ED, LeButt CS, Flick-Smith HC, Quinn CP, Westra H, Galloway D, Mateczun A, Goldman S, Groen H, Baillie LW. Albrecht MT, et al. Infect Immun. 2007 Nov;75(11):5425-33. doi: 10.1128/IAI.00261-07. Epub 2007 Jul 23. Infect Immun. 2007. PMID: 17646360 Free PMC article. - Role of toxin functional domains in anthrax pathogenesis.
Brossier F, Weber-Levy M, Mock M, Sirard JC. Brossier F, et al. Infect Immun. 2000 Apr;68(4):1781-6. doi: 10.1128/IAI.68.4.1781-1786.2000. Infect Immun. 2000. PMID: 10722564 Free PMC article. - Anthrax toxin.
Bhatnagar R, Batra S. Bhatnagar R, et al. Crit Rev Microbiol. 2001;27(3):167-200. doi: 10.1080/20014091096738. Crit Rev Microbiol. 2001. PMID: 11596878 Review. - [Anthrax toxins].
Brossier F, Guidi-Rontani C, Mock M. Brossier F, et al. C R Seances Soc Biol Fil. 1998;192(3):437-44. C R Seances Soc Biol Fil. 1998. PMID: 9759382 Review. French.
Cited by
- Engineering anthrax toxin variants that exclusively form octamers and their application to targeting tumors.
Phillips DD, Fattah RJ, Crown D, Zhang Y, Liu S, Moayeri M, Fischer ER, Hansen BT, Ghirlando R, Nestorovich EM, Wein AN, Simons L, Leppla SH, Leysath CE. Phillips DD, et al. J Biol Chem. 2013 Mar 29;288(13):9058-65. doi: 10.1074/jbc.M113.452110. Epub 2013 Feb 7. J Biol Chem. 2013. PMID: 23393143 Free PMC article. - Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins.
Barth H, Aktories K, Popoff MR, Stiles BG. Barth H, et al. Microbiol Mol Biol Rev. 2004 Sep;68(3):373-402, table of contents. doi: 10.1128/MMBR.68.3.373-402.2004. Microbiol Mol Biol Rev. 2004. PMID: 15353562 Free PMC article. Review. - Anthrax protective antigen cleavage and clearance from the blood of mice and rats.
Moayeri M, Wiggins JF, Leppla SH. Moayeri M, et al. Infect Immun. 2007 Nov;75(11):5175-84. doi: 10.1128/IAI.00719-07. Epub 2007 Aug 27. Infect Immun. 2007. PMID: 17724066 Free PMC article. - Tumor Imaging Using Radiolabeled Matrix Metalloproteinase-Activated Anthrax Proteins.
Elvina Xavier MA, Liu S, Bugge TH, Torres JB, Mosley M, Hopkins SL, Allen PD, Berridge G, Vendrell I, Fischer R, Kersemans V, Smart S, Leppla SH, Cornelissen B. Elvina Xavier MA, et al. J Nucl Med. 2019 Oct;60(10):1474-1482. doi: 10.2967/jnumed.119.226423. Epub 2019 Apr 6. J Nucl Med. 2019. PMID: 30954944 Free PMC article. - The heart is an early target of anthrax lethal toxin in mice: a protective role for neuronal nitric oxide synthase (nNOS).
Moayeri M, Crown D, Dorward DW, Gardner D, Ward JM, Li Y, Cui X, Eichacker P, Leppla SH. Moayeri M, et al. PLoS Pathog. 2009 May;5(5):e1000456. doi: 10.1371/journal.ppat.1000456. Epub 2009 May 29. PLoS Pathog. 2009. PMID: 19478875 Free PMC article.
References
- Nature. 1978 Nov 16;276(5685):269-70 - PubMed
- Biochem J. 1996 Mar 15;314 ( Pt 3):713-21 - PubMed
- Infect Immun. 1984 Sep;45(3):761-7 - PubMed
- Proc Natl Acad Sci U S A. 1984 Dec;81(24):7742-6 - PubMed
- J Biol Chem. 1986 Jun 5;261(16):7123-6 - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical