A human homologue of Escherichia coli ClpP caseinolytic protease: recombinant expression, intracellular processing and subcellular localization - PubMed (original) (raw)
A human homologue of Escherichia coli ClpP caseinolytic protease: recombinant expression, intracellular processing and subcellular localization
T J Corydon et al. Biochem J. 1998.
Abstract
We have recently cloned a human cDNA (hClpP) with significant sequence similarity to the ATP-dependent Escherichia coli ClpP protease [Bross, Andresen, Knudsen, Kruse and Gregersen (1995) FEBS Lett. 377, 249-252]. In the present study, synthesis, intracellular processing and subcellular localization of hClpP have been analysed in intact cells and in a cell-free system. Using pulse-labelling/immunoprecipitation of Chang cells transfected with the hClpP cDNA, we observed two major bands with apparent molecular masses of approx. 39 and 37 kDa. A pulse-chase experiment showed that these bands were converted into one mature-enzyme band with a molecular mass of approx. 32 kDa that was stable for at least 24 h. The 37 kDa band co-migrated with a band produced upon expression of full-length hClpP in E. coli, and the 32 kDa band co-migrated with the product of E. coli-expressed hClpP in which the 56 N-terminal residues had been deleted, indicating that the 37 kDa moiety represents the precursor and that approx. 56 residues are cleaved off during maturation. The processing of hClpP in intact cells was dependent on mitochondrial membrane potential. These results were confirmed in an import assay system using in vitro transcription and translation directed by the hClpP cDNA and isolated rat liver mitochondria. No protease activity towards a series of fluorogenic peptides could be observed in extracts of Chang cells overexpressing hClpP, indicating that the protease may not be active without co-factors. Immunofluorescence studies using confocal-laser-scanning microscopy showed co-localization of the hClpP and the mitochondrially located Hsp60 (heat-shock protein 60). Taken together, the results reported here show that hClpP is localized inside mitochondria and that the trafficking and processing of hClpP resembles the typical biogenesis pathway for nuclear-encoded mitochondrial proteins.
Similar articles
- Mitochondrial localization and oligomeric structure of HClpP, the human homologue of E. coli ClpP.
de Sagarra MR, Mayo I, Marco S, Rodríguez-Vilariño S, Oliva J, Carrascosa JL, Casta ñ JG. de Sagarra MR, et al. J Mol Biol. 1999 Oct 1;292(4):819-25. doi: 10.1006/jmbi.1999.3121. J Mol Biol. 1999. PMID: 10525407 - Functional proteolytic complexes of the human mitochondrial ATP-dependent protease, hClpXP.
Kang SG, Ortega J, Singh SK, Wang N, Huang NN, Steven AC, Maurizi MR. Kang SG, et al. J Biol Chem. 2002 Jun 7;277(23):21095-102. doi: 10.1074/jbc.M201642200. Epub 2002 Mar 28. J Biol Chem. 2002. PMID: 11923310 - The stroma of higher plant plastids contain ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpA: an archetypal two-component ATP-dependent protease.
Shanklin J, DeWitt ND, Flanagan JM. Shanklin J, et al. Plant Cell. 1995 Oct;7(10):1713-22. doi: 10.1105/tpc.7.10.1713. Plant Cell. 1995. PMID: 7580259 Free PMC article. - Plant mitochondria contain proteolytic and regulatory subunits of the ATP-dependent Clp protease.
Halperin T, Zheng B, Itzhaki H, Clarke AK, Adam Z. Halperin T, et al. Plant Mol Biol. 2001 Mar;45(4):461-8. doi: 10.1023/a:1010677220323. Plant Mol Biol. 2001. PMID: 11352464 - Protease Ti (Clp), a multi-component ATP-dependent protease in Escherichia coli.
Chung CH, Seol JH, Kang MS. Chung CH, et al. Biol Chem. 1996 Sep;377(9):549-54. Biol Chem. 1996. PMID: 9067252 Review.
Cited by
- Mitochondrial ClpP activity is required for cisplatin resistance in human cells.
Zhang Y, Maurizi MR. Zhang Y, et al. Biochim Biophys Acta. 2016 Feb;1862(2):252-64. doi: 10.1016/j.bbadis.2015.12.005. Epub 2015 Dec 7. Biochim Biophys Acta. 2016. PMID: 26675528 Free PMC article. - Harmaline to Human Mitochondrial Caseinolytic Serine Protease Activation for Pediatric Diffuse Intrinsic Pontine Glioma Treatment.
Miciaccia M, Rizzo F, Centonze A, Cavallaro G, Contino M, Armenise D, Baldelli OM, Solidoro R, Ferorelli S, Scarcia P, Agrimi G, Zingales V, Cimetta E, Ronsisvalle S, Sipala FM, Polosa PL, Fortuna CG, Perrone MG, Scilimati A. Miciaccia M, et al. Pharmaceuticals (Basel). 2024 Jan 19;17(1):135. doi: 10.3390/ph17010135. Pharmaceuticals (Basel). 2024. PMID: 38276008 Free PMC article. - ONC201 and imipridones: Anti-cancer compounds with clinical efficacy.
Prabhu VV, Morrow S, Rahman Kawakibi A, Zhou L, Ralff M, Ray J, Jhaveri A, Ferrarini I, Lee Y, Parker C, Zhang Y, Borsuk R, Chang WI, Honeyman JN, Tavora F, Carneiro B, Raufi A, Huntington K, Carlsen L, Louie A, Safran H, Seyhan AA, Tarapore RS, Schalop L, Stogniew M, Allen JE, Oster W, El-Deiry WS. Prabhu VV, et al. Neoplasia. 2020 Dec;22(12):725-744. doi: 10.1016/j.neo.2020.09.005. Epub 2020 Oct 23. Neoplasia. 2020. PMID: 33142238 Free PMC article. Review. - Polymerase delta-interacting protein 38 (PDIP38) modulates the stability and activity of the mitochondrial AAA+ protease CLPXP.
Strack PR, Brodie EJ, Zhan H, Schuenemann VJ, Valente LJ, Saiyed T, Lowth BR, Angley LM, Perugini MA, Zeth K, Truscott KN, Dougan DA. Strack PR, et al. Commun Biol. 2020 Nov 6;3(1):646. doi: 10.1038/s42003-020-01358-6. Commun Biol. 2020. PMID: 33159171 Free PMC article. - Estrogen, mitochondria, and growth of cancer and non-cancer cells.
Felty Q, Roy D. Felty Q, et al. J Carcinog. 2005 Jan 15;4(1):1. doi: 10.1186/1477-3163-4-1. J Carcinog. 2005. PMID: 15651993 Free PMC article.
References
- Trends Biochem Sci. 1997 Apr;22(4):118-23 - PubMed
- Biochem Med Metab Biol. 1986 Aug;36(1):98-105 - PubMed
- Microbiol Rev. 1992 Dec;56(4):592-621 - PubMed
- J Biol Chem. 1990 Jul 25;265(21):12536-45 - PubMed
- J Biol Chem. 1994 Nov 18;269(46):29308-13 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous