Identification and characterization of an essential family of inositol polyphosphate 5-phosphatases (INP51, INP52 and INP53 gene products) in the yeast Saccharomyces cerevisiae - PubMed (original) (raw)
Identification and characterization of an essential family of inositol polyphosphate 5-phosphatases (INP51, INP52 and INP53 gene products) in the yeast Saccharomyces cerevisiae
L E Stolz et al. Genetics. 1998 Apr.
Abstract
We recently demonstrated that the S. cerevisiae INP51 locus (YIL002c) encodes an inositol polyphosphate 5-phosphatase. Here we describe two related yeast loci, INP52 (YNL106c) and INP53 (YOR109w). Like Inp51p, the primary structures of Inp52p and Inp53p resemble the mammalian synaptic vesicle-associated protein, synaptojanin, and contain a carboxy-terminal catalytic domain and an amino-terminal SAC1-like segment. Inp51p (108 kD), Inp52p (136 kD) and Inp53p (124 kD) are membrane-associated. Single null mutants (inp51, inp52, or inp53) are viable. Both inp51 inp52 and inp52 inp53 double mutants display compromised cell growth, whereas an inp51 inp53 double mutant does not. An inp51 inp52 inp53 triple mutant is inviable on standard medium, but can grow weakly on media supplemented with an osmotic stabilizer (1 M sorbitol). An inp51 mutation, and to a lesser degree an inp52 mutation, confers cold-resistant growth in a strain background that cannot grow at temperatures below 15 degrees. Analysis of inositol metabolites in vivo showed measurable accumulation of phosphatidylinositol 4,5-bisphosphate in the inp51 mutant. Electron microscopy revealed plasma membrane invaginations and cell wall thickening in double mutants and the triple mutant grown in sorbitol-containing medium. A fluorescent dye that detects endocytic and vacuolar membranes suggests that the vacuole is highly fragmented in inp51 inp52 double mutants. Our observations indicate that Inp51p, Inp52p, and Inp53p have distinct functions and that substrates and/or products of inositol polyphosphate 5-phosphatases may have roles in vesicle trafficking, membrane structure, and/or cell wall formation.
Similar articles
- INP51, a yeast inositol polyphosphate 5-phosphatase required for phosphatidylinositol 4,5-bisphosphate homeostasis and whose absence confers a cold-resistant phenotype.
Stolz LE, Kuo WJ, Longchamps J, Sekhon MK, York JD. Stolz LE, et al. J Biol Chem. 1998 May 8;273(19):11852-61. doi: 10.1074/jbc.273.19.11852. J Biol Chem. 1998. PMID: 9565610 - The yeast inositol polyphosphate 5-phosphatases inp52p and inp53p translocate to actin patches following hyperosmotic stress: mechanism for regulating phosphatidylinositol 4,5-bisphosphate at plasma membrane invaginations.
Ooms LM, McColl BK, Wiradjaja F, Wijayaratnam AP, Gleeson P, Gething MJ, Sambrook J, Mitchell CA. Ooms LM, et al. Mol Cell Biol. 2000 Dec;20(24):9376-90. doi: 10.1128/MCB.20.24.9376-9390.2000. Mol Cell Biol. 2000. PMID: 11094088 Free PMC article. - SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases.
Guo S, Stolz LE, Lemrow SM, York JD. Guo S, et al. J Biol Chem. 1999 May 7;274(19):12990-5. doi: 10.1074/jbc.274.19.12990. J Biol Chem. 1999. PMID: 10224048 - Sac phosphatase domain proteins.
Hughes WE, Cooke FT, Parker PJ. Hughes WE, et al. Biochem J. 2000 Sep 1;350 Pt 2(Pt 2):337-52. Biochem J. 2000. PMID: 10947947 Free PMC article. Review. - The inositol polyphosphate 5-phosphatases: traffic controllers, waistline watchers and tumour suppressors?
Astle MV, Horan KA, Ooms LM, Mitchell CA. Astle MV, et al. Biochem Soc Symp. 2007;(74):161-81. doi: 10.1042/BSS0740161. Biochem Soc Symp. 2007. PMID: 17233589 Review.
Cited by
- Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole-associated Vac14-Fig4 complex, a PtdIns(3,5)P2-specific phosphatase.
Rudge SA, Anderson DM, Emr SD. Rudge SA, et al. Mol Biol Cell. 2004 Jan;15(1):24-36. doi: 10.1091/mbc.e03-05-0297. Epub 2003 Oct 3. Mol Biol Cell. 2004. PMID: 14528018 Free PMC article. - Essential role for the myotubularin-related phosphatase Ymr1p and the synaptojanin-like phosphatases Sjl2p and Sjl3p in regulation of phosphatidylinositol 3-phosphate in yeast.
Parrish WR, Stefan CJ, Emr SD. Parrish WR, et al. Mol Biol Cell. 2004 Aug;15(8):3567-79. doi: 10.1091/mbc.e04-03-0209. Epub 2004 May 28. Mol Biol Cell. 2004. PMID: 15169871 Free PMC article. - Analysis of the roles of phosphatidylinositol-4,5-_bis_phosphate and individual subunits in assembly, localization, and function of Saccharomyces cerevisiae target of rapamycin complex 2.
Martinez Marshall MN, Emmerstorfer-Augustin A, Leskoske KL, Zhang LH, Li B, Thorner J. Martinez Marshall MN, et al. Mol Biol Cell. 2019 Jun 1;30(12):1555-1574. doi: 10.1091/mbc.E18-10-0682. Epub 2019 Apr 10. Mol Biol Cell. 2019. PMID: 30969890 Free PMC article. - The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2.
Fadri M, Daquinag A, Wang S, Xue T, Kunz J. Fadri M, et al. Mol Biol Cell. 2005 Apr;16(4):1883-900. doi: 10.1091/mbc.e04-07-0564. Epub 2005 Feb 2. Mol Biol Cell. 2005. PMID: 15689497 Free PMC article. - The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate.
Stefan CJ, Audhya A, Emr SD. Stefan CJ, et al. Mol Biol Cell. 2002 Feb;13(2):542-57. doi: 10.1091/mbc.01-10-0476. Mol Biol Cell. 2002. PMID: 11854411 Free PMC article.
References
- Annu Rev Cell Biol. 1990;6:41-67 - PubMed
- Nature. 1997 May 1;387(6628):101-5 - PubMed
- J Biol Chem. 1992 Jun 15;267(17):11818-23 - PubMed
- Nature. 1992 Jul 9;358(6382):157-9 - PubMed
- Nature. 1992 Jul 16;358(6383):239-42 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases