Early specification of striatal projection neurons and interneuronal subtypes in the lateral and medial ganglionic eminence - PubMed (original) (raw)
Early specification of striatal projection neurons and interneuronal subtypes in the lateral and medial ganglionic eminence
M Olsson et al. Neuroscience. 1998 Jun.
Abstract
The striatum is thought to be generated from two transient swellings in the ventral telencephalon, the lateral and medial ganglionic eminences, present at mid-stages of embryonic rat development. We have studied the relative contribution of these structures to the specific generation of striatal neuronal subtypes such as projection neurons and cholinergic and somatostatin-containing interneurons at an early stage and a mid stage in striatal neurogenesis. Dissociated progenitors isolated from the embryonic day 12.5 and embryonic day 15.5 rat lateral ganglionic eminence grafted into the previously ibotenic acid lesioned adult striatum, produce grafts containing extensive numbers of neurons expressing messenger RNA for the striatal projection neuron marker, DARPP-32, whereas grafts of the embryonic day 12.5 and embryonic day 15.5 medial ganglionic eminences do not. While preprosomatostatin messenger RNA-expressing neurons were observed in grafts from each of the lateral ganglionic eminence and medial ganglionic eminence at both embryonic day 12.5 and embryonic day 15.5, choline acetyltransferase messenger RNA-expressing cholinergic neurons were largely found in grafts derived from the embryonic day 12.5 medial ganglionic eminence. These results suggest that the neuronal diversity of the adult striatum may derive both from the lateral ganglionic eminence, providing DARPP-32-expressing projection neurons as well as somatostatin-containing interneurons, and the early stage medial ganglionic eminence specifically contributing the cholinergic interneurons.
Similar articles
- Phenotypic development of the human embryonic striatal primordium: a study of cultured and grafted neurons from the lateral and medial ganglionic eminences.
Grasbon-Frodl EM, Nakao N, Lindvall O, Brundin P. Grasbon-Frodl EM, et al. Neuroscience. 1996 Jul;73(1):171-83. doi: 10.1016/0306-4522(96)00008-5. Neuroscience. 1996. PMID: 8783240 - Extensive migration and target innervation by striatal precursors after grafting into the neonatal striatum.
Olsson M, Bentlage C, Wictorin K, Campbell K, Björklund A. Olsson M, et al. Neuroscience. 1997 Jul;79(1):57-78. doi: 10.1016/s0306-4522(96)00606-9. Neuroscience. 1997. PMID: 9178865 - Projection neurons in fetal striatal transplants are predominantly derived from the lateral ganglionic eminence.
Olsson M, Campbell K, Wictorin K, Björklund A. Olsson M, et al. Neuroscience. 1995 Dec;69(4):1169-82. doi: 10.1016/0306-4522(95)00325-d. Neuroscience. 1995. PMID: 8848105 - From Progenitors to Progeny: Shaping Striatal Circuit Development and Function.
Knowles R, Dehorter N, Ellender T. Knowles R, et al. J Neurosci. 2021 Nov 17;41(46):9483-9502. doi: 10.1523/JNEUROSCI.0620-21.2021. J Neurosci. 2021. PMID: 34789560 Free PMC article. Review. - Neuronal cell migration for the developmental formation of the mammalian striatum.
Hamasaki T, Goto S, Nishikawa S, Ushio Y. Hamasaki T, et al. Brain Res Brain Res Rev. 2003 Jan;41(1):1-12. doi: 10.1016/s0165-0173(02)00216-3. Brain Res Brain Res Rev. 2003. PMID: 12505644 Review.
Cited by
- Understanding and modeling regional specification of the human ganglionic eminence.
Hunt CPJ, Moriarty N, van Deursen CBJ, Gantner CW, Thompson LH, Parish CL. Hunt CPJ, et al. Stem Cell Reports. 2023 Mar 14;18(3):654-671. doi: 10.1016/j.stemcr.2023.01.010. Epub 2023 Feb 16. Stem Cell Reports. 2023. PMID: 36801004 Free PMC article. - TrkB receptor controls striatal formation by regulating the number of newborn striatal neurons.
Baydyuk M, Russell T, Liao GY, Zang K, An JJ, Reichardt LF, Xu B. Baydyuk M, et al. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1669-74. doi: 10.1073/pnas.1004744108. Epub 2011 Jan 4. Proc Natl Acad Sci U S A. 2011. PMID: 21205893 Free PMC article. - Short Term Development and Fate of MGE-Like Neural Progenitor Cells in Jaundiced and Non-Jaundiced Rat Brain.
Yang FC, Draper J, Smith PG, Vivian JL, Shapiro SM, Stanford JA. Yang FC, et al. Cell Transplant. 2018 Apr;27(4):654-665. doi: 10.1177/0963689718766327. Epub 2018 May 30. Cell Transplant. 2018. PMID: 29845869 Free PMC article. - 3D Imaging of Striatal Transplants in a Small Animal Model of Huntington's Disease.
Schültke E, Pinzer BR, Stampanoni M, Harsan L, Döbrössy M. Schültke E, et al. Neurol Int. 2023 Jul 24;15(3):896-907. doi: 10.3390/neurolint15030057. Neurol Int. 2023. PMID: 37489363 Free PMC article. - Physical interactions between Gsx2 and Ascl1 balance progenitor expansion versus neurogenesis in the mouse lateral ganglionic eminence.
Roychoudhury K, Salomone J, Qin S, Cain B, Adam M, Potter SS, Nakafuku M, Gebelein B, Campbell K. Roychoudhury K, et al. Development. 2020 Apr 10;147(7):dev185348. doi: 10.1242/dev.185348. Development. 2020. PMID: 32122989 Free PMC article.