DNA methylation, nucleosomes and the inheritance of chromatin structure and function - PubMed (original) (raw)
Review
. 1998:214:22-35; discussion 36-50.
doi: 10.1002/9780470515501.ch3.
Affiliations
- PMID: 9601010
- DOI: 10.1002/9780470515501.ch3
Review
DNA methylation, nucleosomes and the inheritance of chromatin structure and function
S U Kass et al. Novartis Found Symp. 1998.
Abstract
The replication of the genome during S phase is a crucial period for the establishment and maintenance of programmes of differential gene activity. Existing chromosomal structures are disrupted during replication and reassembled on both daughter chromatids. The capacity to reassemble a particular chromatin structure with defined functional properties reflects the commitment of a cell type to a particular state of determination. The core and linker histones and their modifications, enzymes that modify the histones, DNA methylation and proteins that recognize methylated DNA within chromatin may all play independent or interrelated roles in defining the functional properties of chromatin. Pre-existing protein-DNA interactions and DNA methylation in a parental chromosome will influence the structure and function of daughter chromosomes generating an epigenetic imprint. In this chapter we consider the events occurring at the eukaryotic replication fork, their consequences for pre-existing chromosomal structures and how an epigenetic imprint might be maintained.
Similar articles
- Inheritance of chromatin states.
Wolffe AP. Wolffe AP. Dev Genet. 1994;15(6):463-70. doi: 10.1002/dvg.1020150604. Dev Genet. 1994. PMID: 7834905 Review. - The architecture and function of the chromatin replication machinery.
Miller TC, Costa A. Miller TC, et al. Curr Opin Struct Biol. 2017 Dec;47:9-16. doi: 10.1016/j.sbi.2017.03.011. Epub 2017 Apr 15. Curr Opin Struct Biol. 2017. PMID: 28419835 Review. - Cell identity bookmarking through heterogeneous chromatin landscape maintenance during the cell cycle.
Luo H, Xi Y, Li W, Li J, Li Y, Dong S, Peng L, Liu Y, Yu W. Luo H, et al. Hum Mol Genet. 2017 Nov 1;26(21):4231-4243. doi: 10.1093/hmg/ddx312. Hum Mol Genet. 2017. PMID: 29088426 - Inheritance of Histones H3 and H4 during DNA Replication In Vitro.
Madamba EV, Berthet EB, Francis NJ. Madamba EV, et al. Cell Rep. 2017 Oct 31;21(5):1361-1374. doi: 10.1016/j.celrep.2017.10.033. Cell Rep. 2017. PMID: 29091772 - Replicating chromatin: a tale of histones.
Groth A. Groth A. Biochem Cell Biol. 2009 Feb;87(1):51-63. doi: 10.1139/O08-102. Biochem Cell Biol. 2009. PMID: 19234523 Review.
Cited by
- A single point mutation in TFIIA suppresses NC2 requirement in vivo.
Xie J, Collart M, Lemaire M, Stelzer G, Meisterernst M. Xie J, et al. EMBO J. 2000 Feb 15;19(4):672-82. doi: 10.1093/emboj/19.4.672. EMBO J. 2000. PMID: 10675336 Free PMC article. - Sequence analysis of origins of replication in the Saccharomyces cerevisiae genomes.
Li WC, Zhong ZJ, Zhu PP, Deng EZ, Ding H, Chen W, Lin H. Li WC, et al. Front Microbiol. 2014 Nov 18;5:574. doi: 10.3389/fmicb.2014.00574. eCollection 2014. Front Microbiol. 2014. PMID: 25477864 Free PMC article. - The Role of Extracellular Vesicles: An Epigenetic View of the Cancer Microenvironment.
Qian Z, Shen Q, Yang X, Qiu Y, Zhang W. Qian Z, et al. Biomed Res Int. 2015;2015:649161. doi: 10.1155/2015/649161. Epub 2015 Oct 25. Biomed Res Int. 2015. PMID: 26582468 Free PMC article. Review. - Epigenetic regulation of protein tyrosine phosphatases: potential molecular targets for cancer therapy.
Jacob ST, Motiwala T. Jacob ST, et al. Cancer Gene Ther. 2005 Aug;12(8):665-72. doi: 10.1038/sj.cgt.7700828. Cancer Gene Ther. 2005. PMID: 15803146 Free PMC article. Review. - Genomic features of the human dopamine transporter gene and its potential epigenetic States: implications for phenotypic diversity.
Shumay E, Fowler JS, Volkow ND. Shumay E, et al. PLoS One. 2010 Jun 10;5(6):e11067. doi: 10.1371/journal.pone.0011067. PLoS One. 2010. PMID: 20548783 Free PMC article.