Behavioural, physiological and morphological analysis of a line of apolipoprotein E knockout mouse - PubMed (original) (raw)
doi: 10.1016/s0306-4522(97)00598-8.
J C Barnes, T V Bliss, D P Cain, K Cambon, H A Davies, M L Errington, L A Fellows, R A Gray, T Hoh, M Stewart, C H Large, G A Higgins
Affiliations
- PMID: 9607706
- DOI: 10.1016/s0306-4522(97)00598-8
Behavioural, physiological and morphological analysis of a line of apolipoprotein E knockout mouse
R Anderson et al. Neuroscience. 1998 Jul.
Abstract
Using apolipoprotein E knockout mice derived from the Maeda source [Piedrahita J. A. et al. (1992) Proc. natn. Acad Sci. US.A. 89, 4471 4475], we have studied the influence of apolipoprotein E gene deletion on normal CNS function by neurological tests and water maze learning, hippocampal ultrastructure assessed by quantitative immunocytochemistry and electron microscopy, CNS plasticity, i.e. hippocampal long-term potentiation and amygdaloid kindling, and CNS repair, i.e. synaptic recovery in the hippocampus following deafferentation. In each study there was little difference between the apolipoprotein E knockout mice and wild-type controls of similar age and genetic background. Apolipoprotein E knockout mice aged eight months demonstrated accurate spatial learning and normal neurological function. Synaptophysin and microtubule-associated protein 2 immunohistochemistry and electron microscopic analysis of these animals revealed that the hippocampal synaptic and dendritic densities were similar between genotypes. The induction and maintenance of kindled seizures and hippocampal long-term potentiation were indistinguishable between groups. Finally, unilateral entorhinal cortex lesions produced a marked loss of hippocampal synaptophysin immunoreactivity in both groups and a marked up-regulation of apolipoprotein E in the wild-type group. Both apolipoprotein E knockout and wild-type groups showed immunohistochemical evidence of reactive synaptogenesis, although the apolipoprotein E knockout group may have initially shown greater synaptic loss. It is suggested that either apolipoprotein E is of no importance in the maintenance of synaptic integrity and in processes of CNS plasticity and repair, or more likely, alternative (apolipo)proteins may compensate for the loss of apolipoprotein E in the knockout animals.
Comment in
- Synaptic alterations in apolipoprotein E knockout mice.
Veinbergs I, Masliah E. Veinbergs I, et al. Neuroscience. 1999;91(1):401-3. doi: 10.1016/s0306-4522(98)00602-2. Neuroscience. 1999. PMID: 10336088 No abstract available.
Similar articles
- Alterations in ApoE and ApoJ in relation to degeneration and regeneration in a mouse model of entorhinal cortex lesion.
White F, Nicoll JA, Horsburgh K. White F, et al. Exp Neurol. 2001 Jun;169(2):307-18. doi: 10.1006/exnr.2001.7655. Exp Neurol. 2001. PMID: 11358444 - Synaptic loss is accompanied by an increase in synaptic area in the dentate gyrus of aged human apolipoprotein E4 transgenic mice.
Cambon K, Davies HA, Stewart MG. Cambon K, et al. Neuroscience. 2000;97(4):685-92. doi: 10.1016/s0306-4522(00)00065-8. Neuroscience. 2000. PMID: 10842013 - Activity-dependent changes in synaptophysin immunoreactivity in hippocampus, piriform cortex, and entorhinal cortex of the rat.
Li S, Reinprecht I, Fahnestock M, Racine RJ. Li S, et al. Neuroscience. 2002;115(4):1221-9. doi: 10.1016/s0306-4522(02)00485-2. Neuroscience. 2002. PMID: 12453493 - [Neuronal plasticity associated with learning and epileptic seizures: LTP and KIP].
Maru E. Maru E. Seishin Shinkeigaku Zasshi. 2001;103(10):866-81. Seishin Shinkeigaku Zasshi. 2001. PMID: 11797444 Review. Japanese. - GABRB3 gene deficient mice: a potential model of autism spectrum disorder.
DeLorey TM. DeLorey TM. Int Rev Neurobiol. 2005;71:359-82. doi: 10.1016/s0074-7742(05)71015-1. Int Rev Neurobiol. 2005. PMID: 16512358 Review. No abstract available.
Cited by
- Defective lipid delivery modulates glucose tolerance and metabolic response to diet in apolipoprotein E-deficient mice.
Hofmann SM, Perez-Tilve D, Greer TM, Coburn BA, Grant E, Basford JE, Tschöp MH, Hui DY. Hofmann SM, et al. Diabetes. 2008 Jan;57(1):5-12. doi: 10.2337/db07-0403. Epub 2007 Oct 3. Diabetes. 2008. PMID: 17914034 Free PMC article. - Proteomic Analysis of Mitochondria-Enriched Fraction Isolated from the Frontal Cortex and Hippocampus of Apolipoprotein E Knockout Mice Treated with Alda-1, an Activator of Mitochondrial Aldehyde Dehydrogenase (ALDH2).
Stachowicz A, Olszanecki R, Suski M, Głombik K, Basta-Kaim A, Adamek D, Korbut R. Stachowicz A, et al. Int J Mol Sci. 2017 Feb 17;18(2):435. doi: 10.3390/ijms18020435. Int J Mol Sci. 2017. PMID: 28218653 Free PMC article. - Protective Effect of Genistein against Neuronal Degeneration in ApoE-/- Mice Fed a High-Fat Diet.
Park YJ, Ko JW, Jeon S, Kwon YH. Park YJ, et al. Nutrients. 2016 Oct 31;8(11):692. doi: 10.3390/nu8110692. Nutrients. 2016. PMID: 27809235 Free PMC article. - Hypothalamic-pituitary-adrenal dysfunction in Apoe(-/-) mice: possible role in behavioral and metabolic alterations.
Raber J, Akana SF, Bhatnagar S, Dallman MF, Wong D, Mucke L. Raber J, et al. J Neurosci. 2000 Mar 1;20(5):2064-71. doi: 10.1523/JNEUROSCI.20-05-02064.2000. J Neurosci. 2000. PMID: 10684907 Free PMC article. - Is apolipoprotein e required for cognitive function in humans?: implications for Alzheimer drug development.
Lane-Donovan C, Herz J. Lane-Donovan C, et al. JAMA Neurol. 2014 Oct;71(10):1213-5. doi: 10.1001/jamaneurol.2014.2013. JAMA Neurol. 2014. PMID: 25110920 Free PMC article. No abstract available.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases