Coevolution of immunoglobulin heavy- and light-chain variable-region gene families - PubMed (original) (raw)

Comparative Study

Coevolution of immunoglobulin heavy- and light-chain variable-region gene families

T Sitnikova et al. Mol Biol Evol. 1998 Jun.

Abstract

The gene families encoding the immunoglobulin variable regions of heavy (VH) and light (VL) chains in vertebrates are composed of many genes. However, the gene number and the extent of diversity among VH and VL gene copies vary with species. To examine the causes of this variation and the evolutionary forces for these multigene families, we conducted a phylogenetic analysis of VH and VL genes from the species of amniotes. The results of our analysis showed that for each species, VH and VL genes have the same pattern of clustering in the trees, and, according to this clustering pattern, the species can be divided into two groups. In the first group of species (humans and mice), VH and VL genes were extensively intermingled with genes from other organisms; in the second group of species (chickens, rabbits, cattle, sheep, swine, and horses), the genes tended to form clusters within the same group of organisms. These results suggest that the VH and VL multigene families have evolved in the same fashion: they have undergone coordinated contraction and expansion of gene repertoires such that each group of organisms is characterized by a certain level of diversity of VH and VL genes. The extent of diversity among copies of VH and VL genes in each species is related to the mechanism of generation of antibody variety. In humans and mice, DNA rearrangement of immunoglobulin variable, diversity, and joining-segment genes is a main source of antibody diversity, whereas in chickens, rabbits, cattle, sheep, swine, and horses, somatic hypermutation and somatic gene conversion play important roles. The evolutionary pattern of VH and VL multigene families is consistent with the birth-and-death model of evolution, yet different levels of diversifying selection seem to operate in the VH and VL genes of these two groups of species.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources