Sustained pulmonary hypertension and right ventricular hypertrophy after chronic hypoxia in mice with congenital deficiency of nitric oxide synthase 3 - PubMed (original) (raw)
Sustained pulmonary hypertension and right ventricular hypertrophy after chronic hypoxia in mice with congenital deficiency of nitric oxide synthase 3
W Steudel et al. J Clin Invest. 1998.
Abstract
Chronic hypoxia induces pulmonary hypertension and right ventricular (RV) hypertrophy. Nitric oxide (NO) has been proposed to modulate the pulmonary vascular response to hypoxia. We investigated the effects of congenital deficiency of endothelial NO synthase (NOS3) on the pulmonary vascular responses to breathing 11% oxygen for 3-6 wk. After 3 wk of hypoxia, RV systolic pressure was greater in NOS3-deficient than in wild-type mice (35+/-2 vs 28+/-1 mmHg, x+/-SE, P < 0.001). Pulmonary artery pressure (PPA) and incremental total pulmonary vascular resistance (RPI) were greater in NOS3-deficient than in wild-type mice (PPA 22+/-1 vs 19+/-1 mmHg, P < 0.05 and RPI 92+/-11 vs 55+/-5 mmHg.min.gram.ml-1, P < 0.05). Morphometry revealed that the proportion of muscularized small pulmonary vessels was almost fourfold greater in NOS3-deficient mice than in wild-type mice. After 6 wk of hypoxia, the increase of RV free wall thickness, measured by transesophageal echocardiography, and of RV weight/body weight ratio were more marked in NOS3-deficient mice than in wild-type mice (RV wall thickness 0.67+/-0.05 vs 0.48+/-0.02 mm, P < 0.01 and RV weight/body weight ratio 2.1+/-0.2 vs 1.6+/-0.1 mg. gram-1, P < 0.05). RV hypertrophy produced by chronic hypoxia was prevented by breathing 20 parts per million NO in both genotypes of mice. These results suggest that congenital NOS3 deficiency enhances hypoxic pulmonary vascular remodeling and hypertension, and RV hypertrophy, and that NO production by NOS3 is vital to counterbalance pulmonary vasoconstriction caused by chronic hypoxic stress.
Similar articles
- NOS3 deficiency augments hypoxic pulmonary vasoconstriction and enhances systemic oxygenation during one-lung ventilation in mice.
Liu R, Evgenov OV, Ichinose F. Liu R, et al. J Appl Physiol (1985). 2005 Feb;98(2):748-52. doi: 10.1152/japplphysiol.00820.2004. Epub 2004 Oct 1. J Appl Physiol (1985). 2005. PMID: 15465885 - Activation of soluble guanylate cyclase reverses experimental pulmonary hypertension and vascular remodeling.
Dumitrascu R, Weissmann N, Ghofrani HA, Dony E, Beuerlein K, Schmidt H, Stasch JP, Gnoth MJ, Seeger W, Grimminger F, Schermuly RT. Dumitrascu R, et al. Circulation. 2006 Jan 17;113(2):286-95. doi: 10.1161/CIRCULATIONAHA.105.581405. Epub 2006 Jan 3. Circulation. 2006. PMID: 16391154 - Reduced hypoxic pulmonary vascular remodeling by nitric oxide from the endothelium.
Ozaki M, Kawashima S, Yamashita T, Ohashi Y, Rikitake Y, Inoue N, Hirata KI, Hayashi Y, Itoh H, Yokoyama M. Ozaki M, et al. Hypertension. 2001 Feb;37(2):322-7. doi: 10.1161/01.hyp.37.2.322. Hypertension. 2001. PMID: 11230292 - [Pulmonary hypertension in endothelial NO synthase knockout mice].
Hirata Y. Hirata Y. Nihon Rinsho. 2001 Jun;59(6):1081-5. Nihon Rinsho. 2001. PMID: 11411117 Review. Japanese. - Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension.
Hampl V, Herget J. Hampl V, et al. Physiol Rev. 2000 Oct;80(4):1337-72. doi: 10.1152/physrev.2000.80.4.1337. Physiol Rev. 2000. PMID: 11015616 Review.
Cited by
- Pulmonary vascular disease related to hemodynamic stress in the pulmonary circulation.
Chan SY, Loscalzo J. Chan SY, et al. Compr Physiol. 2011 Jan;1(1):123-39. doi: 10.1002/cphy.c090004. Compr Physiol. 2011. PMID: 23737167 Free PMC article. Review. - Chronic hypoxia decreases arterial and venous compliance in isolated perfused rat lungs: an effect that is reversed by exogenous L-arginine.
Jin Y, Chen B, Calvert TJ, Chicoine LG, Liu Y, Nelin LD. Jin Y, et al. Am J Physiol Heart Circ Physiol. 2013 Jan 15;304(2):H195-205. doi: 10.1152/ajpheart.00188.2012. Epub 2012 Oct 26. Am J Physiol Heart Circ Physiol. 2013. PMID: 23103497 Free PMC article. - Role of Nitric Oxide Synthases in Respiratory Health and Disease: Insights from Triple Nitric Oxide Synthases Knockout Mice.
Ogoshi T, Yatera K, Mukae H, Tsutsui M. Ogoshi T, et al. Int J Mol Sci. 2024 Aug 28;25(17):9317. doi: 10.3390/ijms25179317. Int J Mol Sci. 2024. PMID: 39273265 Free PMC article. Review. - Inhibition of p38 MAPK reverses hypoxia-induced pulmonary artery endothelial dysfunction.
Weerackody RP, Welsh DJ, Wadsworth RM, Peacock AJ. Weerackody RP, et al. Am J Physiol Heart Circ Physiol. 2009 May;296(5):H1312-20. doi: 10.1152/ajpheart.00977.2008. Epub 2009 Feb 6. Am J Physiol Heart Circ Physiol. 2009. PMID: 19201999 Free PMC article. - Redox regulation of ion channels in the pulmonary circulation.
Olschewski A, Weir EK. Olschewski A, et al. Antioxid Redox Signal. 2015 Feb 20;22(6):465-85. doi: 10.1089/ars.2014.5899. Epub 2014 Jun 30. Antioxid Redox Signal. 2015. PMID: 24702125 Free PMC article. Review.
References
- N Engl J Med. 1991 May 30;324(22):1539-47 - PubMed
- J Vasc Res. 1997 May-Jun;34(3):212-9 - PubMed
- Am J Physiol. 1992 Sep;263(3 Pt 1):L325-32 - PubMed
- N Engl J Med. 1993 Feb 11;328(6):399-405 - PubMed
- Anesthesiology. 1993 Mar;78(3):427-35 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases