Sites for Galpha binding on the G protein beta subunit overlap with sites for regulation of phospholipase Cbeta and adenylyl cyclase - PubMed (original) (raw)
. 1998 Jun 26;273(26):16265-72.
doi: 10.1074/jbc.273.26.16265.
Affiliations
- PMID: 9632686
- DOI: 10.1074/jbc.273.26.16265
Free article
Sites for Galpha binding on the G protein beta subunit overlap with sites for regulation of phospholipase Cbeta and adenylyl cyclase
Y Li et al. J Biol Chem. 1998.
Free article
Abstract
Heterotrimeric G proteins, composed of alpha and betagamma subunits, forward signals from transmembrane receptors to intracellular effector enzymes and ion channels. Free betagamma activates downstream targets, but its action is terminated by association with GDP-liganded alpha subunits. Because alpha can inhibit activation of many effectors by betagamma, it is likely that the alpha subunit binding surfaces on betagamma overlap the surfaces necessary for effector activation. To test this hypothesis, we mutated residues on beta shown to contact alpha in the recently published crystal structures of the alphabetagamma heterotrimer (Wall, M. A., Coleman, D. E., Lee, E., Iniguez-Lluhi, J. A., Posner, B. A., Gilman, A. G., and Sprang, S. R. (1995) Cell 83, 1047-1058; Lambright, D. G., Sondek, J., Bohm, A., Skiba, N. P., Hamm, H. E., and Sigler, P. B. (1996) Nature 379, 311-319.). The alpha subunit binds to the flat, top surface of the toroidal beta subunit and also extends a helix along the side of the beta subunit at blade 1. We mutated four residues on the top surface of beta (Hbeta1[L117A], Hbeta1[D228R], Hbeta1[D246S], and Hbeta1[W332A]) and two residues on the side of beta that contacts alpha (Hbeta1[N88A/K89A]). Each of the mutant proteins was able to form beta gamma dimers, but they differed in their ability to bind alpha and to activate phospholipase C beta2 (PLCbeta2), PLCbeta3, and adenylyl cyclase II. Mutation of residues along the side of the torus at blade 1 diminish affinity for alpha but do not prevent activation of any of the effectors. Mutations on the alpha binding surface differentially affected PLCbeta2, PLCbeta3, and adenylyl cyclase II. Residues that affect PLCbeta and adenylyl cyclase II activity are found on opposite sides of the central tunnel, suggesting that PLC and adenylyl cyclase, like the alpha subunit, make many contacts on the top surface. None of the mutations affected the ability of betagamma to inhibit adenylyl cyclase I. We conclude that alpha, PLCbeta2, PLCbeta3, and adenylyl cyclase II share an interaction on the top surface of beta. The importance of individual residues is different for alpha binding and for effector activation and differs even between closely related isoforms of the same effector.
Similar articles
- Sites important for PLCbeta2 activation by the G protein betagamma subunit map to the sides of the beta propeller structure.
Panchenko MP, Saxena K, Li Y, Charnecki S, Sternweis PM, Smith TF, Gilman AG, Kozasa T, Neer EJ. Panchenko MP, et al. J Biol Chem. 1998 Oct 23;273(43):28298-304. doi: 10.1074/jbc.273.43.28298. J Biol Chem. 1998. PMID: 9774453 - Interaction sites of the G protein beta subunit with brain G protein-coupled inward rectifier K+ channel.
Albsoul-Younes AM, Sternweis PM, Zhao P, Nakata H, Nakajima S, Nakajima Y, Kozasa T. Albsoul-Younes AM, et al. J Biol Chem. 2001 Apr 20;276(16):12712-7. doi: 10.1074/jbc.M011231200. Epub 2001 Jan 17. J Biol Chem. 2001. PMID: 11278861 - Role of isoprenoid lipids on the heterotrimeric G protein gamma subunit in determining effector activation.
Myung CS, Yasuda H, Liu WW, Harden TK, Garrison JC. Myung CS, et al. J Biol Chem. 1999 Jun 4;274(23):16595-603. doi: 10.1074/jbc.274.23.16595. J Biol Chem. 1999. PMID: 10347226 - Presynaptic signaling by heterotrimeric G-proteins.
Brown DA, Sihra TS. Brown DA, et al. Handb Exp Pharmacol. 2008;(184):207-60. doi: 10.1007/978-3-540-74805-2_8. Handb Exp Pharmacol. 2008. PMID: 18064416 Review. - On the roles of Mg in the activation of G proteins.
Birnbaumer L, Zurita AR. Birnbaumer L, et al. J Recept Signal Transduct Res. 2010 Dec;30(6):372-5. doi: 10.3109/10799893.2010.508165. Epub 2010 Aug 23. J Recept Signal Transduct Res. 2010. PMID: 20731539 Free PMC article. Review.
Cited by
- G protein betagamma subunits as targets for small molecule therapeutic development.
Smrcka AV, Lehmann DM, Dessal AL. Smrcka AV, et al. Comb Chem High Throughput Screen. 2008 Jun;11(5):382-95. doi: 10.2174/138620708784534761. Comb Chem High Throughput Screen. 2008. PMID: 18537559 Free PMC article. Review. - The regulator of G-protein signaling proteins involved in sugar and abscisic acid signaling in Arabidopsis seed germination.
Chen Y, Ji F, Xie H, Liang J, Zhang J. Chen Y, et al. Plant Physiol. 2006 Jan;140(1):302-10. doi: 10.1104/pp.105.069872. Epub 2005 Dec 16. Plant Physiol. 2006. PMID: 16361523 Free PMC article. - Subtype-dependent regulation of Gβγ signalling.
Tennakoon M, Senarath K, Kankanamge D, Ratnayake K, Wijayaratna D, Olupothage K, Ubeysinghe S, Martins-Cannavino K, Hébert TE, Karunarathne A. Tennakoon M, et al. Cell Signal. 2021 Jun;82:109947. doi: 10.1016/j.cellsig.2021.109947. Epub 2021 Feb 11. Cell Signal. 2021. PMID: 33582184 Free PMC article. Review. - Evidence that a protein-protein interaction 'hot spot' on heterotrimeric G protein betagamma subunits is used for recognition of a subclass of effectors.
Scott JK, Huang SF, Gangadhar BP, Samoriski GM, Clapp P, Gross RA, Taussig R, Smrcka AV. Scott JK, et al. EMBO J. 2001 Feb 15;20(4):767-76. doi: 10.1093/emboj/20.4.767. EMBO J. 2001. PMID: 11179221 Free PMC article. - Beyond the G protein α subunit: investigating the functional impact of other components of the Gαi3 heterotrimers.
Rysiewicz B, Błasiak E, Mystek P, Dziedzicka-Wasylewska M, Polit A. Rysiewicz B, et al. Cell Commun Signal. 2023 Oct 10;21(1):279. doi: 10.1186/s12964-023-01307-w. Cell Commun Signal. 2023. PMID: 37817242 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources