Modulation of striatal quinolinate neurotoxicity by elevation of endogenous brain kynurenic acid - PubMed (original) (raw)

Modulation of striatal quinolinate neurotoxicity by elevation of endogenous brain kynurenic acid

C A Harris et al. Br J Pharmacol. 1998 May.

Abstract

1. Nicotinylalanine, an inhibitor of kynurenine metabolism, has been shown to elevate brain levels of endogenous kynurenic acid, an excitatory amino acid receptor antagonist. This study examined the potential of nicotinylalanine to influence excitotoxic damage to striatal NADPH diaphorase (NADPH-d) and gamma-aminobutyric acid (GABA)ergic neurones that are selectively lost in Huntington's disease. 2. A unilateral injection of the N-methyl-D-aspartate (NMDA) receptor agonist, quinolinic acid, into the rat striatum produced an 88% depletion of NADPH-d neurones. Intrastriatal infusion of quinolinic acid also produced a dose-dependent reduction in striatal GABA content. 3. Nicotinylalanine (2.3, 3.2, 4.6, 6.4 nmol 5 microl(-1), i.c.v.) administered with L-kynurenine (450 mg kg(-1)), a precursor of kynurenic acid, and probenecid (200 mg kg(-1)), an inhibitor of organic acid transport, 3 h before the injection of quinolinic acid (15 nmol) produced a dose-related attenuation of the quinolinic acid-induced loss of NADPH-d neurones. Nicotinylalanine (5.6 nmol 5 microl(-1)) in combination with L-kynurenine and probenecid also attenuated quinolinic acid-induced reductions in striatal GABA content. 4. Nicotinylalanine (4.6 nmol, i.c.v.), L-kynurenine alone or L-kynurenine administered with probenecid did not attenuate quinolinic acid-induced depletion of striatal NADPH-d neurones. However, combined administration of kynurenine and probenecid did prevent quinolinic acid-induced reductions in ipsilateral striatal GABA content. 5. Injection of nicotinylalanine, at doses (4.6 nmol and 5.6 nmol i.c.v.) which attenuated quinolinic acid-induced striatal neurotoxicity, when combined with L-kynurenine and probenecid produced increases in both whole brain and striatal kynurenic acid levels. Administration of L-kynurenine and probenecid without nicotinylalanine also elevated kynurenic acid, but to a lesser extent. 6. The results of this study demonstrate that nicotinylalanine has the potential to attenuate quinolinic acid-induced striatal neurotoxicity. It is suggested that nicotinylalanine exerts its effect by increasing levels of endogenous kynurenic acid in the brain. The results of this study suggest that agents which influence levels of endogenous excitatory amino acid antagonists such as kynurenic acid may be useful in preventing excitotoxic damage to neurones in the CNS.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources