Rules for the evolution of gene circuitry - PubMed (original) (raw)
Affiliations
- PMID: 9697171
Free article
Rules for the evolution of gene circuitry
M A Savageau. Pac Symp Biocomput. 1998.
Free article
Abstract
Cells possess the genes required for growth and function in a variety of contexts. In any given context there is a corresponding pattern of gene expression in which some genes are OFF and others ON. The ability of cells to switch genes ON and OFF in a coordinate fashion to produce the required patterns of expression is the fundamental basis for complex processes like normal development and pathogenesis. The molecular study of gene regulation has revealed a plethora of mechanisms and circuitry that have evolved to perform what appears to be the same switching function. To some this implies the absence of rules. However, simple rules capable of relating molecular design to the natural environment have begun to emerge through the analysis of elementary gene circuits. Two of these rules are reviewed in this paper. These simple rules have the ability to unify understanding across several different levels of biological organization--molecular, physiological, developmental, ecological.
Similar articles
- Convergent evolution of gene circuits.
Conant GC, Wagner A. Conant GC, et al. Nat Genet. 2003 Jul;34(3):264-6. doi: 10.1038/ng1181. Nat Genet. 2003. PMID: 12819781 - From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli.
Thieffry D, Huerta AM, Pérez-Rueda E, Collado-Vides J. Thieffry D, et al. Bioessays. 1998 May;20(5):433-40. doi: 10.1002/(SICI)1521-1878(199805)20:5<433::AID-BIES10>3.0.CO;2-2. Bioessays. 1998. PMID: 9670816 - A new experimental approach for studying bacterial genomic island evolution identifies island genes with bacterial host-specific expression patterns.
Wilson JW, Nickerson CA. Wilson JW, et al. BMC Evol Biol. 2006 Jan 5;6:2. doi: 10.1186/1471-2148-6-2. BMC Evol Biol. 2006. PMID: 16396675 Free PMC article. - Synthetic gene circuits: design with directed evolution.
Haseltine EL, Arnold FH. Haseltine EL, et al. Annu Rev Biophys Biomol Struct. 2007;36:1-19. doi: 10.1146/annurev.biophys.36.040306.132600. Annu Rev Biophys Biomol Struct. 2007. PMID: 17243895 Review.
Cited by
- A model comparison study of the flowering time regulatory network in Arabidopsis.
Wang CC, Chang PC, Ng KL, Chang CM, Sheu PC, Tsai JJ. Wang CC, et al. BMC Syst Biol. 2014 Feb 11;8:15. doi: 10.1186/1752-0509-8-15. BMC Syst Biol. 2014. PMID: 24513114 Free PMC article. - Interactive network analysis of the plasma amino acids profile in a mouse model of hyperglycemia.
Tanaka T, Mochida T, Maki Y, Shiraki Y, Mori H, Matsumoto S, Shimbo K, Ando T, Nakamura K, Endo F, Okamoto M. Tanaka T, et al. Springerplus. 2013 Jun 28;2(1):287. doi: 10.1186/2193-1801-2-287. Print 2013 Dec. Springerplus. 2013. PMID: 23853755 Free PMC article. - Recovering genetic regulatory networks from chromatin immunoprecipitation and steady-state microarray data.
Zhao W, Serpedin E, Dougherty ER. Zhao W, et al. EURASIP J Bioinform Syst Biol. 2008;2008(1):248747. doi: 10.1155/2008/248747. EURASIP J Bioinform Syst Biol. 2008. PMID: 18584039 Free PMC article. - A model-based optimization framework for the inference of regulatory interactions using time-course DNA microarray expression data.
Thomas R, Paredes CJ, Mehrotra S, Hatzimanikatis V, Papoutsakis ET. Thomas R, et al. BMC Bioinformatics. 2007 Jun 29;8:228. doi: 10.1186/1471-2105-8-228. BMC Bioinformatics. 2007. PMID: 17603872 Free PMC article. - Regulatory network of Escherichia coli: consistency between literature knowledge and microarray profiles.
Gutiérrez-Ríos RM, Rosenblueth DA, Loza JA, Huerta AM, Glasner JD, Blattner FR, Collado-Vides J. Gutiérrez-Ríos RM, et al. Genome Res. 2003 Nov;13(11):2435-43. doi: 10.1101/gr.1387003. Genome Res. 2003. PMID: 14597655 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous