Antibacterial action of vinegar against food-borne pathogenic bacteria including Escherichia coli O157:H7 - PubMed (original) (raw)

Antibacterial action of vinegar against food-borne pathogenic bacteria including Escherichia coli O157:H7

E Entani et al. J Food Prot. 1998 Aug.

Free article

Abstract

The bacteriostatic and bactericidal actions of vinegar on food-borne pathogenic bacteria including enterohemorrhagic E. coli (EHEC) O157:H7 were examined. The growth of all strains evaluated was inhibited with a 0.1% concentration of acetic acid in the vinegar. This inhibition was generally increased in the presence of sodium chloride or glucose. There was almost no difference in sensitivity to the bacteriostatic action of vinegar among the strains of pathogenic E. coli. Vinegar had a bactericidal effect on food-borne pathogenic bacteria including EHEC O157:H7. This action against EHEC O157:H7 was synergically enhanced by sodium chloride but was attenuated with glucose. For EHEC strains (O157:H7, O26:H11, O111:HNM) the difference in the inactivation rate due to vinegar among strains used was small, although an enteropathogenic E. coli (EPEC) O111:K58:H- strain was more sensitive, being more quickly killed compared with EHEC strains. The inactivation rate due to vinegar was constant irrespective of inoculum size. However, it differed greatly depending on growth phase of the cells, where logarithmic growth phase cells were more sensitive and easily killed than stationary phase cells. The bactericidal activity of vinegar increased with the temperature. Various conditions for bactericidal effects on EHEC O157:H7 were examined by the multiparametric analysis of five factors: acetic acid concentration in the vinegar, sodium chloride concentration, temperature, incubation time, and viable cell number. The combined use of vinegar and sodium chloride, with use of an appropriate treatment temperature, was found to be markedly effective for the prevention of bacterial food poisoning.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources