Structure of a cephalosporin synthase - PubMed (original) (raw)
. 1998 Aug 20;394(6695):805-9.
doi: 10.1038/29575.
A C van Scheltinga, M D Lloyd, T Hara, S Ramaswamy, A Perrakis, A Thompson, H J Lee, J E Baldwin, C J Schofield, J Hajdu, I Andersson
Affiliations
- PMID: 9723623
- DOI: 10.1038/29575
Free article
Structure of a cephalosporin synthase
K Valegård et al. Nature. 1998.
Free article
Abstract
Penicillins and cephalosporins are among the most widely used therapeutic agents. These antibiotics are produced from fermentation-derived materials as their chemical synthesis is not commercially viable. Unconventional steps in their biosynthesis are catalysed by Fe(II)-dependent oxidases/oxygenases; isopenicillin N synthase (IPNS) creates in one step the bicyclic nucleus of penicillins, and deacetoxycephalosporin C synthase (DAOCS) catalyses the expansion of the penicillin nucleus into the nucleus of cephalosporins. Both enzymes use dioxygen-derived ferryl intermediates in catalysis but, in contrast to IPNS, the ferryl form of DAOCS is produced by the oxidative splitting of a co-substrate, 2-oxoglutarate (alpha-ketoglutarate). This route of controlled ferryl formation and reaction is common to many mononuclear ferrous enzymes, which participate in a broader range of reactions than their well-characterized counterparts, the haem enzymes. Here we report the first crystal structure of a 2-oxoacid-dependent oxygenase. High-resolution structures for apo-DAOCS, the enzyme complexed with Fe(II), and with Fe(II) and 2-oxoglutarate, were obtained from merohedrally twinned crystals. Using a model based on these structures, we propose a mechanism for ferryl formation.
Similar articles
- Conformational flexibility of the C terminus with implications for substrate binding and catalysis revealed in a new crystal form of deacetoxycephalosporin C synthase.
Oster LM, van Scheltinga AC, Valegård K, Hose AM, Dubus A, Hajdu J, Andersson I. Oster LM, et al. J Mol Biol. 2004 Oct 8;343(1):157-71. doi: 10.1016/j.jmb.2004.07.049. J Mol Biol. 2004. PMID: 15381427 - Studies on the active site of deacetoxycephalosporin C synthase.
Lloyd MD, Lee HJ, Harlos K, Zhang ZH, Baldwin JE, Schofield CJ, Charnock JM, Garner CD, Hara T, Terwisscha van Scheltinga AC, Valegård K, Viklund JA, Hajdu J, Andersson I, Danielsson A, Bhikhabhai R. Lloyd MD, et al. J Mol Biol. 1999 Apr 16;287(5):943-60. doi: 10.1006/jmbi.1999.2594. J Mol Biol. 1999. PMID: 10222202 - Kinetic and crystallographic studies on deacetoxycephalosporin C synthase (DAOCS).
Lee HJ, Lloyd MD, Harlos K, Clifton IJ, Baldwin JE, Schofield CJ. Lee HJ, et al. J Mol Biol. 2001 May 18;308(5):937-48. doi: 10.1006/jmbi.2001.4649. J Mol Biol. 2001. PMID: 11352583 - Isopenicillin N Synthase: Crystallographic Studies.
Chapman NC, Rutledge PJ. Chapman NC, et al. Chembiochem. 2021 May 14;22(10):1687-1705. doi: 10.1002/cbic.202000743. Epub 2021 Mar 25. Chembiochem. 2021. PMID: 33415840 Review. - Directed evolution and rational approaches to improving Streptomyces clavuligerus deacetoxycephalosporin C synthase for cephalosporin production.
Goo KS, Chua CS, Sim TS. Goo KS, et al. J Ind Microbiol Biotechnol. 2009 May;36(5):619-33. doi: 10.1007/s10295-009-0549-4. Epub 2009 Mar 7. J Ind Microbiol Biotechnol. 2009. PMID: 19277744 Review.
Cited by
- Spectroscopic and magnetic studies of wild-type and mutant forms of the Fe(II)- and 2-oxoglutarate-dependent decarboxylase ALKBH4.
Bjørnstad LG, Zoppellaro G, Tomter AB, Falnes PØ, Andersson KK. Bjørnstad LG, et al. Biochem J. 2011 Mar 15;434(3):391-8. doi: 10.1042/BJ20101667. Biochem J. 2011. PMID: 21166655 Free PMC article. - Iterative combinatorial mutagenesis as an effective strategy for generation of deacetoxycephalosporin C synthase with improved activity toward penicillin G.
Ji J, Fan K, Tian X, Zhang X, Zhang Y, Yang K. Ji J, et al. Appl Environ Microbiol. 2012 Nov;78(21):7809-12. doi: 10.1128/AEM.02122-12. Epub 2012 Aug 24. Appl Environ Microbiol. 2012. PMID: 22923414 Free PMC article. - Fosmidomycin biosynthesis diverges from related phosphonate natural products.
Parkinson EI, Erb A, Eliot AC, Ju KS, Metcalf WW. Parkinson EI, et al. Nat Chem Biol. 2019 Nov;15(11):1049-1056. doi: 10.1038/s41589-019-0343-1. Epub 2019 Aug 26. Nat Chem Biol. 2019. PMID: 31451762 Free PMC article. - Dissecting the Mechanism of the Nonheme Iron Endoperoxidase FtmOx1 Using Substrate Analogues.
Zhu G, Yan W, Wang X, Cheng R, Naowarojna N, Wang K, Wang J, Song H, Wang Y, Liu H, Xia X, Costello CE, Liu X, Zhang L, Liu P. Zhu G, et al. JACS Au. 2022 Jun 10;2(7):1686-1698. doi: 10.1021/jacsau.2c00248. eCollection 2022 Jul 25. JACS Au. 2022. PMID: 35911443 Free PMC article. - Spectroscopic and computational studies of a bifunctional iron- and 2-oxoglutarate dependent enzyme, AsqJ.
Xue S, Tang Y, Kurnikov IV, Liao HJ, Li J, Chan NL, Kurnikova MG, Chang WC, Guo Y. Xue S, et al. Methods Enzymol. 2024;704:199-232. doi: 10.1016/bs.mie.2024.05.023. Epub 2024 Jun 29. Methods Enzymol. 2024. PMID: 39300648 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources