Lipoprotein lipase expression exclusively in liver. A mouse model for metabolism in the neonatal period and during cachexia - PubMed (original) (raw)
Lipoprotein lipase expression exclusively in liver. A mouse model for metabolism in the neonatal period and during cachexia
M Merkel et al. J Clin Invest. 1998.
Abstract
Lipoprotein lipase (LPL), the rate-limiting enzyme in triglyceride hydrolysis, is normally not expressed in the liver of adult humans and animals. However, liver LPL is found in the perinatal period, and in adults it can be induced by cytokines. To study the metabolic consequences of liver LPL expression, transgenic mice producing human LPL specifically in the liver were generated and crossed onto the LPL knockout (LPL0) background. LPL expression exclusively in liver rescued LPL0 mice from neonatal death. The mice developed a severe cachexia during high fat suckling, but caught up in weight after switching to a chow diet. At 18 h of age, compared with LPL0 mice, liver-only LPL-expressing mice had equally elevated triglycerides (10,700 vs. 14,800 mg/dl, P = NS), increased plasma ketones (4.3 vs. 1.7 mg/dl, P < 0.05) and glucose (28 vs. 15 mg/dl, P < 0.05), and excessive amounts of intracellular liver lipid droplets. Adult mice expressing LPL exclusively in liver had slower VLDL turnover than wild-type mice, but greater VLDL mass clearance, increased VLDL triglyceride production, and three- to fourfold more plasma ketones. In summary, it appears that liver LPL shunts circulating triglycerides to the liver, which results in a futile cycle of enhanced VLDL production and increased ketone production, and subsequently spares glucose. This may be important to sustain brain and muscle function at times of metabolic stress with limited glucose availability.
Similar articles
- Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes.
Weinstock PH, Bisgaier CL, Aalto-Setälä K, Radner H, Ramakrishnan R, Levak-Frank S, Essenburg AD, Zechner R, Breslow JL. Weinstock PH, et al. J Clin Invest. 1995 Dec;96(6):2555-68. doi: 10.1172/JCI118319. J Clin Invest. 1995. PMID: 8675619 Free PMC article. - Adenovirus-mediated rescue of lipoprotein lipase-deficient mice. Lipolysis of triglyceride-rich lipoproteins is essential for high density lipoprotein maturation in mice.
Strauss JG, Frank S, Kratky D, Hämmerle G, Hrzenjak A, Knipping G, von Eckardstein A, Kostner GM, Zechner R. Strauss JG, et al. J Biol Chem. 2001 Sep 28;276(39):36083-90. doi: 10.1074/jbc.M104430200. Epub 2001 Jun 29. J Biol Chem. 2001. PMID: 11432868 - Adenovirus-mediated gene transfer of human lipoprotein lipase ameliorates the hyperlipidemias associated with apolipoprotein E and LDL receptor deficiencies in mice.
Zsigmond E, Kobayashi K, Tzung KW, Li L, Fuke Y, Chan L. Zsigmond E, et al. Hum Gene Ther. 1997 Nov 1;8(16):1921-33. doi: 10.1089/hum.1997.8.16-1921. Hum Gene Ther. 1997. PMID: 9382958 - Regulation of triglyceride metabolism by Angiopoietin-like proteins.
Mattijssen F, Kersten S. Mattijssen F, et al. Biochim Biophys Acta. 2012 May;1821(5):782-9. doi: 10.1016/j.bbalip.2011.10.010. Epub 2011 Oct 25. Biochim Biophys Acta. 2012. PMID: 22063269 Review. - Lipoprotein lipase: from gene to obesity.
Wang H, Eckel RH. Wang H, et al. Am J Physiol Endocrinol Metab. 2009 Aug;297(2):E271-88. doi: 10.1152/ajpendo.90920.2008. Epub 2009 Mar 24. Am J Physiol Endocrinol Metab. 2009. PMID: 19318514 Review.
Cited by
- In vivo role of the HNF4alpha AF-1 activation domain revealed by exon swapping.
Briançon N, Weiss MC. Briançon N, et al. EMBO J. 2006 Mar 22;25(6):1253-62. doi: 10.1038/sj.emboj.7601021. Epub 2006 Feb 23. EMBO J. 2006. PMID: 16498401 Free PMC article. - Dietary lipid levels impact lipoprotein lipase, hormone-sensitive lipase, and fatty acid synthetase gene expression in three tissues of adult GIFT strain of Nile tilapia, Oreochromis niloticus.
Tian J, Wu F, Yang CG, Jiang M, Liu W, Wen H. Tian J, et al. Fish Physiol Biochem. 2015 Feb;41(1):1-18. doi: 10.1007/s10695-014-0001-1. Epub 2014 Oct 28. Fish Physiol Biochem. 2015. PMID: 25347968 Clinical Trial. - Cholesterol induces lipoprotein lipase expression in a tree shrew (Tupaia belangeri chinensis) model of non-alcoholic fatty liver disease.
Zhang L, Zhang Z, Li Y, Liao S, Wu X, Chang Q, Liang B. Zhang L, et al. Sci Rep. 2015 Nov 2;5:15970. doi: 10.1038/srep15970. Sci Rep. 2015. PMID: 26522240 Free PMC article. - Hepatic stearoyl-CoA desaturase-1 deficiency induces fibrosis and hepatocellular carcinoma-related gene activation under a high carbohydrate low fat diet.
Ntambi JN, Kalyesubula M, Cootway D, Lewis SA, Phang YX, Liu Z, O'Neill LM, Lefers L, Huff H, Miller JR, Pegkou Christofi V, Anderson E, Aljohani A, Mutebi F, Dutta M, Patterson A, Ntambi JM. Ntambi JN, et al. Biochim Biophys Acta Mol Cell Biol Lipids. 2024 Oct;1869(7):159538. doi: 10.1016/j.bbalip.2024.159538. Epub 2024 Jul 25. Biochim Biophys Acta Mol Cell Biol Lipids. 2024. PMID: 39067685 - Lipid alterations in chronic liver disease and liver cancer.
Paul B, Lewinska M, Andersen JB. Paul B, et al. JHEP Rep. 2022 Mar 26;4(6):100479. doi: 10.1016/j.jhepr.2022.100479. eCollection 2022 Jun. JHEP Rep. 2022. PMID: 35469167 Free PMC article. Review.
References
- J Biol Chem. 1994 Jun 10;269(23):16376-82 - PubMed
- J Biol Chem. 1957 May;226(1):497-509 - PubMed
- J Lipid Res. 1976 Sep;17(5):536-41 - PubMed
- Atherosclerosis. 1977 Apr;26(4):549-61 - PubMed
- J Lipid Res. 1977 Nov;18(6):768-73 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous