The paleontology of intergene retrotransposons of maize - PubMed (original) (raw)
The paleontology of intergene retrotransposons of maize
P SanMiguel et al. Nat Genet. 1998 Sep.
Abstract
Retrotransposons, transposable elements related to animal retroviruses, are found in all eukaryotes investigated and make up the majority of many plant genomes. Their ubiquity points to their importance, especially in their contribution to the large-scale structure of complex genomes. The nature and frequency of retro-element appearance, activation and amplification are poorly understood in all higher eukaryotes. Here we employ a novel approach to determine the insertion dates for 17 of 23 retrotransposons found near the maize adh1 gene, and two others from unlinked sites in the maize genome, by comparison of long terminal repeat (LTR) divergences with the sequence divergence between adh1 in maize and sorghum. All retrotransposons examined have inserted within the last six million years, most in the last three million years. The structure of the adh1 region appears to be standard relative to the other gene-containing regions of the maize genome, thus suggesting that retrotransposon insertions have increased the size of the maize genome from approximately 1200 Mb to 2400 Mb in the last three million years. Furthermore, the results indicate an increased mutation rate in retrotransposons compared with genes.
Similar articles
- Retrotranspositions in orthologous regions of closely related grass species.
Du C, Swigonová Z, Messing J. Du C, et al. BMC Evol Biol. 2006 Aug 16;6:62. doi: 10.1186/1471-2148-6-62. BMC Evol Biol. 2006. PMID: 16914031 Free PMC article. - Study on the evolution of the grande retrotransposon in the zea genus.
García-Martínez J, Martínez-Izquierdo JA. García-Martínez J, et al. Mol Biol Evol. 2003 May;20(5):831-41. doi: 10.1093/molbev/msg095. Epub 2003 Apr 2. Mol Biol Evol. 2003. PMID: 12679538 - Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome.
Rabinowicz PD, Schutz K, Dedhia N, Yordan C, Parnell LD, Stein L, McCombie WR, Martienssen RA. Rabinowicz PD, et al. Nat Genet. 1999 Nov;23(3):305-8. doi: 10.1038/15479. Nat Genet. 1999. PMID: 10545948 - The evolution of Ty1-copia group retrotransposons in eukaryote genomes.
Flavell AJ, Pearce SR, Heslop-Harrison P, Kumar A. Flavell AJ, et al. Genetica. 1997;100(1-3):185-95. Genetica. 1997. PMID: 9440272 Review. - Quasispecies in retrotransposons: a role for sequence variability in Tnt1 evolution.
Casacuberta JM, Vernhettes S, Audeon C, Grandbastien MA. Casacuberta JM, et al. Genetica. 1997;100(1-3):109-17. Genetica. 1997. PMID: 9440263 Review.
Cited by
- Structural and Functional Annotation of Transposable Elements Revealed a Potential Regulation of Genes Involved in Rubber Biosynthesis by TE-Derived siRNA Interference in Hevea brasiliensis.
Wu S, Guyot R, Bocs S, Droc G, Oktavia F, Hu S, Tang C, Montoro P, Leclercq J. Wu S, et al. Int J Mol Sci. 2020 Jun 13;21(12):4220. doi: 10.3390/ijms21124220. Int J Mol Sci. 2020. PMID: 32545790 Free PMC article. - Identification of genetic elements associated with EPSPs gene amplification.
Gaines TA, Wright AA, Molin WT, Lorentz L, Riggins CW, Tranel PJ, Beffa R, Westra P, Powles SB. Gaines TA, et al. PLoS One. 2013 Jun 10;8(6):e65819. doi: 10.1371/journal.pone.0065819. Print 2013. PLoS One. 2013. PMID: 23762434 Free PMC article. - Large distribution and high sequence identity of a Copia-type retrotransposon in angiosperm families.
Dias ES, Hatt C, Hamon S, Hamon P, Rigoreau M, Crouzillat D, Carareto CM, de Kochko A, Guyot R. Dias ES, et al. Plant Mol Biol. 2015 Sep;89(1-2):83-97. doi: 10.1007/s11103-015-0352-8. Epub 2015 Aug 6. Plant Mol Biol. 2015. PMID: 26245353 - Global DNA cytosine methylation as an evolving trait: phylogenetic signal and correlated evolution with genome size in angiosperms.
Alonso C, Pérez R, Bazaga P, Herrera CM. Alonso C, et al. Front Genet. 2015 Jan 29;6:4. doi: 10.3389/fgene.2015.00004. eCollection 2015. Front Genet. 2015. PMID: 25688257 Free PMC article. - Comparative structural analysis of Bru1 region homeologs in Saccharum spontaneum and S. officinarum.
Zhang J, Sharma A, Yu Q, Wang J, Li L, Zhu L, Zhang X, Chen Y, Ming R. Zhang J, et al. BMC Genomics. 2016 Jun 10;17:446. doi: 10.1186/s12864-016-2817-9. BMC Genomics. 2016. PMID: 27287040 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous