IL-12, but not IFN-gamma, plays a major role in sustaining the chronic phase of colitis in IL-10-deficient mice - PubMed (original) (raw)

. 1998 Sep 15;161(6):3143-9.

Affiliations

IL-12, but not IFN-gamma, plays a major role in sustaining the chronic phase of colitis in IL-10-deficient mice

N J Davidson et al. J Immunol. 1998.

Abstract

IL-10-deficient (IL-10(-/-)) mice develop chronic enterocolitis mediated by CD4+ Th1 cells producing IFN-gamma. Because IL-12 can promote Th1 development and IFN-gamma production, the ability of neutralizing anti-IL-12 mAb to modulate colitis in IL-10(-/-) mice was investigated. Anti-IL-12 mAb treatment completely prevented disease development in young IL-10(-/-) mice. Treatment of adult mice resulted in significant amelioration of established disease accompanied by reduced numbers of mesenteric lymph node and colonic CD4+ T cells and of mesenteric lymph node T cells spontaneously producing IFN-gamma. In contrast, anti-IFN-gamma mAb had minimal effect on disease reversal, despite a significant preventative effect in young mice. These findings suggested that IL-12 sustains colitis by supporting the expansion of differentiated Th1 cells that mediate disease independently of their IFN-gamma production. This conclusion was supported by the finding that anti-IL-12 mAb greatly diminished the ability of a limited number of CD4+ T cells expressing high levels of CD45RB from diseased IL-10(-/-) mice to expand and cause colitis in recombination-activating gene-2(-/-) recipients, while anti-IFN-gamma mAb had no effect. Furthermore, IL-12 could support pathogenic IL-10(-/-) T cells stimulated in vitro in the absence of IL-2. While these studies show that IL-12 plays an important role in sustaining activated Th1 cells during the chronic phase of disease, the inability of anti-IL-12 mAb to abolish established colitis or completely prevent disease transfer by Thl cells suggests that additional factors contribute to disease maintenance.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources