Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs - PubMed (original) (raw)
Comparative Study
. 1998 Oct 20;37(42):14719-35.
doi: 10.1021/bi9809425.
Affiliations
- PMID: 9778347
- DOI: 10.1021/bi9809425
Comparative Study
Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs
T Xia et al. Biochemistry. 1998.
Abstract
Improved thermodynamic parameters for prediction of RNA duplex formation are derived from optical melting studies of 90 oligoribonucleotide duplexes containing only Watson-Crick base pairs. To test end or base composition effects, new sets of duplexes are included that have identical nearest neighbors, but different base compositions and therefore different ends. Duplexes with terminal GC pairs are more stable than duplexes with the same nearest neighbors but terminal AU pairs. Penalizing terminal AU base pairs by 0.45 kcal/mol relative to terminal GC base pairs significantly improves predictions of DeltaG degrees37 from a nearest-neighbor model. A physical model is suggested in which the differential treatment of AU and GC ends accounts for the dependence of the total number of Watson-Crick hydrogen bonds on the base composition of a duplex. On average, the new parameters predict DeltaG degrees37, DeltaH degrees, DeltaS degrees, and TM within 3.2%, 6.0%, 6.8%, and 1.3 degreesC, respectively. These predictions are within the limit of the model, based on experimental results for duplexes predicted to have identical thermodynamic parameters.
Similar articles
- Nearest neighbor parameters for inosine x uridine pairs in RNA duplexes.
Wright DJ, Rice JL, Yanker DM, Znosko BM. Wright DJ, et al. Biochemistry. 2007 Apr 17;46(15):4625-34. doi: 10.1021/bi0616910. Epub 2007 Mar 23. Biochemistry. 2007. PMID: 17378583 - Thermodynamic parameters based on a nearest-neighbor model for DNA sequences with a single-bulge loop.
Tanaka F, Kameda A, Yamamoto M, Ohuchi A. Tanaka F, et al. Biochemistry. 2004 Jun 8;43(22):7143-50. doi: 10.1021/bi036188r. Biochemistry. 2004. PMID: 15170351 - An algebraic model of RNA duplex formation.
Bashford JD, Jarvis PD. Bashford JD, et al. Biopolymers. 2004 Apr 15;73(6):657-67. doi: 10.1002/bip.20022. Biopolymers. 2004. PMID: 15048769 - Thermodynamics of base pairing.
Turner DH. Turner DH. Curr Opin Struct Biol. 1996 Jun;6(3):299-304. doi: 10.1016/s0959-440x(96)80047-9. Curr Opin Struct Biol. 1996. PMID: 8804832 Review. - The determination of RNA folding nearest neighbor parameters.
Andronescu M, Condon A, Turner DH, Mathews DH. Andronescu M, et al. Methods Mol Biol. 2014;1097:45-70. doi: 10.1007/978-1-62703-709-9_3. Methods Mol Biol. 2014. PMID: 24639154 Review.
Cited by
- Evaluation of a sophisticated SCFG design for RNA secondary structure prediction.
Nebel ME, Scheid A. Nebel ME, et al. Theory Biosci. 2011 Dec;130(4):313-36. doi: 10.1007/s12064-011-0139-7. Epub 2011 Dec 2. Theory Biosci. 2011. PMID: 22135038 - Selective quenching of fluorescence from unbound oligonucleotides by gold nanoparticles as a probe of RNA structure.
Li H, Liang R, Turner DH, Rothberg LJ, Duan S. Li H, et al. RNA. 2007 Nov;13(11):2034-41. doi: 10.1261/rna.138807. Epub 2007 Sep 25. RNA. 2007. PMID: 17895397 Free PMC article. - Computational and NMR studies of RNA duplexes with an internal pseudouridine-adenosine base pair.
Deb I, Popenda Ł, Sarzyńska J, Małgowska M, Lahiri A, Gdaniec Z, Kierzek R. Deb I, et al. Sci Rep. 2019 Nov 7;9(1):16278. doi: 10.1038/s41598-019-52637-0. Sci Rep. 2019. PMID: 31700156 Free PMC article. - A chemical synthesis of LNA-2,6-diaminopurine riboside, and the influence of 2'-O-methyl-2,6-diaminopurine and LNA-2,6-diaminopurine ribosides on the thermodynamic properties of 2'-O-methyl RNA/RNA heteroduplexes.
Pasternak A, Kierzek E, Pasternak K, Turner DH, Kierzek R. Pasternak A, et al. Nucleic Acids Res. 2007;35(12):4055-63. doi: 10.1093/nar/gkm421. Epub 2007 Jun 12. Nucleic Acids Res. 2007. PMID: 17567607 Free PMC article. - Small Molecule Rescue and Glycosidic Conformational Analysis of the Twister Ribozyme.
Messina KJ, Kierzek R, Tracey MA, Bevilacqua PC. Messina KJ, et al. Biochemistry. 2019 Dec 3;58(48):4857-4868. doi: 10.1021/acs.biochem.9b00742. Epub 2019 Nov 19. Biochemistry. 2019. PMID: 31742390 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous